/*
引用过来的
题意:
给出N个数,问其中是否存在M个数使其满足M个数的和是N的倍数,如果有多组解,
随意输出一组即可。若不存在,输出 0。
题解:
首先必须声明的一点是本题是一定是有解的。原理根据抽屉原理:
因为有n个数,对n个数取余,如果余数中没有出现0,根据鸽巢原理,一定有两个数的余数相同,
如果余数出现0,自然就是n的倍数。也就是说,n个数中一定存在一些数的和是n的倍数。
本题的思路是从第一个数开始一次求得前 i(i <= N)项的和关于N的余数sum,并依次记录相应余数的存在状态,
如果sum == 0;则从第一项到第i项的和即满足题意。如果求得的 sum 在前边已经出现过,假设在第j(j<i)项出现
过相同的 sum 值,则从第 j+1 项到第i项的和一定满足题意。
*/
#include<stdio.h>
#include<string.h>
#define MAX 16000
int s[MAX],sum[MAX],has[MAX];
int main(void)
{
int n,i,j;
while(scanf("%d",&n)!=EOF)
{
int l,r;
memset(has,-,sizeof(has));
memset(sum,,sizeof(sum));
has[]=;
for(i=;i<=n;i++)
scanf("%d",&s[i]);
for(i=;i<=n;i++){
sum[i]=(sum[i-]+s[i])%n;
if(has[sum[i]]==-) has[sum[i]]=i;
else{
l=has[sum[i]];
r=i;
}
}
printf("%d\n",r-l);
for(i=l+;i<=r;i++){
printf("%d\n",s[i]);
}
}
return ;
}

poj2356 Find a multiple(抽屉原理|鸽巢原理)的更多相关文章

  1. [POJ2356]Find a multiple 题解(鸽巢原理)

    [POJ2356]Find a multiple Description -The input contains N natural (i.e. positive integer) numbers ( ...

  2. POJ 2356. Find a multiple 抽屉原理 / 鸽巢原理

    Find a multiple Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7192   Accepted: 3138   ...

  3. POJ 3370. Halloween treats 抽屉原理 / 鸽巢原理

    Halloween treats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7644   Accepted: 2798 ...

  4. ACM数论之旅14---抽屉原理,鸽巢原理,球盒原理(叫法不一又有什么关系呢╮(╯▽╰)╭)

    这章没有什么算法可言,单纯的你懂了原理后会不会运用(反正我基本没怎么用过 ̄ 3 ̄) 有366人,那么至少有两人同一天出生(好孩子就不要在意闰年啦( ̄▽ ̄")) 有13人,那么至少有两人同一月 ...

  5. POJ2356 Find a multiple 抽屉原理(鸽巢原理)

    题意:给你N个数,从中取出任意个数的数 使得他们的和 是 N的倍数: 在鸽巢原理的介绍里面,有例题介绍:设a1,a2,a3,……am是正整数的序列,试证明至少存在正数k和l,1<=k<=l ...

  6. [POJ2356] Find a multiple 鸽巢原理

    Find a multiple Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8776   Accepted: 3791   ...

  7. [poj2356]--Find a multiple ——鸽巢原理

    题意: 给定n个数,从中选取m个数,使得\(\sum | n\).本题使用Special Judge. 题解: 既然使用special judge,我们可以直接构造答案. 首先构造在mod N剩余系下 ...

  8. poj Find a multiple【鸽巢原理】

    参考:https://www.cnblogs.com/ACShiryu/archive/2011/08/09/poj2356.html 鸽巢原理??? 其实不用map但是习惯了就打的map 以下C-c ...

  9. poj 2356 Find a multiple(鸽巢原理)

    Description The input contains N natural (i.e. positive integer) numbers ( N <= ). Each of that n ...

随机推荐

  1. dropdownlist控件的几个属性selectedIndex、selectedItem、selectedValue、selectedItem.Text、selectedItem.value的区别

    转自http://blog.csdn.net/iqv520/article/details/4419186 1. selectedIndex——指的是dropdownlist中选项的索引,为int,从 ...

  2. Oracle EBS-SQL (SYS-1): sysadmin_用户职责查询.sql

    select fu.user_name 用户名, fu.description 用户说明, frv.RESPONSIBILITY_NAME 职责名称, REQUEST_GROUP_NAME 报表组, ...

  3. JDBC笔记

    简介 JDBC是Java规定的访问数据库的API,目前主流的数据库都支持JDBC.使用JDBC访问不同的数据库时需要安装不同的驱动. JDBC定义了数据库的链接,SQL语句的执行以及查询结果集的遍历等 ...

  4. 柯南君:看大数据时代下的IT架构(2)消息队列之RabbitMQ-基础概念详细介绍

    一.基础概念详细介绍 1.引言 你是否遇到过两个(多个)系统间需要通过定时任务来同步某些数据?你是否在为异构系统的不同进程间相互调用.通讯的问题而苦恼.挣扎?如果是,那么恭喜你,消息服务让你可以很轻松 ...

  5. poj2190

    #include <stdio.h> #include <stdlib.h> int main() { ]; ,i; scanf("%s",arr); ;i ...

  6. js 数组,字符串,JSON,bind, Name

    /** * Created by W.J.Chang on 2014/5/23. */ // 判读是否是数组的方法 console.log(Array.isArray(new Array)); con ...

  7. <转>LINQ To SQL 语法及实例大全

    一篇很全很强大的linq to sql 总结 来源:http://blog.csdn.net/pan_junbiao/article/details/7015633 目录(?)[-] LINQ to ...

  8. AJAX背景技术介绍

    AJAX全称为“Asynchronous JavaScript and XML”(异步JavaScript和XML),是指一种创建交互式网页应用的网页开发技术. 主要包含了以下几种技术: Ajax(A ...

  9. android入门——UI(1)

    一.使用TextView ImageView Button EditView做出登录页面 <?xml version="1.0" encoding="utf-8&q ...

  10. iOS开发篇-AFNetworking 上传和下载

    最近用到了关于AFNetworking的上传和下载问题,顺便写到博客中,以供大家参考和研究. //下载NSURLSessionConfiguration *configuration = [NSURL ...