map<int, int> mapIndex;
void mapToIndex(int inorder[], int n)
{
for (int i = ; i < n; i++)
{
mapIndex.insert(map<int, int>::value_type(inorder[i], i);
}
} Node* buildInorderPreorder(int in[], int pre[], int n, int offset)
{
assert(n >= );
if (n == )
return NULL;
int rootVal = pre[];
int i = mapIndex[rootVal] - offset;
Node* root = new Node(rootVal);
root->left = buildInorderPreorder(in, pre+, i, offset);
root->right = buildInorderPreorder(in+i+, pre+i+, n-i-, offset+i+);
return root;
} Node* buildInorderPostorder(int in[], int post[], int n, int offset)
{
assert(n >= );
if (n == )
return NULL;
int rootVal = post[n-];
int i = mapIndex[rootVal] - offset;
Node* root = new Node(rootVal);
root->left = buildInorderPostorder(in, post, i, offset);
root->right = buildINorderPostorder(in+i+, post+i, n-i-, offset+i+);
return root;
}

Construct Binary Tree From Inorder and Preorder/Postorder Traversal的更多相关文章

  1. 105. Construct Binary Tree from Inorder and preorder Traversal

    /* * 105. Construct Binary Tree from Inorder and preorder Traversal * 11.20 By Mingyang * 千万不要以为root ...

  2. Leetcode | Construct Binary Tree from Inorder and (Preorder or Postorder) Traversal

    Construct Binary Tree from Preorder and Inorder Traversal Given preorder and inorder traversal of a ...

  3. Leetcode, construct binary tree from inorder and post order traversal

    Sept. 13, 2015 Spent more than a few hours to work on the leetcode problem, and my favorite blogs ab ...

  4. 36. Construct Binary Tree from Inorder and Postorder Traversal && Construct Binary Tree from Preorder and Inorder Traversal

    Construct Binary Tree from Inorder and Postorder Traversal OJ: https://oj.leetcode.com/problems/cons ...

  5. LeetCode:Construct Binary Tree from Inorder and Postorder Traversal,Construct Binary Tree from Preorder and Inorder Traversal

    LeetCode:Construct Binary Tree from Inorder and Postorder Traversal Given inorder and postorder trav ...

  6. 【题解二连发】Construct Binary Tree from Inorder and Postorder Traversal & Construct Binary Tree from Preorder and Inorder Traversal

    LeetCode 原题链接 Construct Binary Tree from Inorder and Postorder Traversal - LeetCode Construct Binary ...

  7. leetcode -day23 Construct Binary Tree from Inorder and Postorder Traversal &amp; Construct Binary Tree f

    1.  Construct Binary Tree from Inorder and Postorder Traversal Given inorder and postorder travers ...

  8. Construct Binary Tree from Inorder and Postorder Traversal

    Construct Binary Tree from Inorder and Postorder Traversal Given inorder and postorder traversal of ...

  9. LeetCode: Construct Binary Tree from Inorder and Postorder Traversal 解题报告

    Construct Binary Tree from Inorder and Postorder Traversal Given inorder and postorder traversal of ...

随机推荐

  1. Unix/Linux环境C编程入门教程(4) Debian Linux环境搭建

    Unix/Linux版本众多,我们推荐Unix/Linux初学者选用几款典型的Unix/Linux操作系统进行学习. 1.广义的Debian是指一个致力于创建自由操作系统的合作组织及其作品,由于Deb ...

  2. linux下修改.bash_profile立即生效的三种方法

    1 . .bash_profile 2 source .bash_profile 3 exec bash --login

  3. 解决Node.js调用fs.renameSync报错的问题(Error: EXDEV, cross-device link not permitted)

    2014-08-23 今天开始学习Node.js,在写一个文件上传的功能时候,调用fs.renameSync方法错误 出错代码所在如下: function upload(response,reques ...

  4. oracle字符集查看修改

    一.什么是Oracle字符集 Oracle字符集是一个字节数据的解释的符号集合,有大小之分,有相互的包容关系.ORACLE 支持国家语言的体系结构允许你使用本地化语言来存储,处理,检索数据.它使数据库 ...

  5. 【HTML5】DOMContentLoaded事件

    这个事件是从HTML中的onLoad的延伸而来的,当一个页面完成加载时,初始化脚本的方法是使用load事件,但这个类函数的缺点是仅在所有资源都完全加载后才被触发,这有时会导致比较严重的延迟,开发人员随 ...

  6. S3C6410嵌入式应用平台构建(二)

    [2014-4/11~4/14]经过之前的实验,对Uboot已经有了大体的了解,前我们已经把led灯给点亮,但这不是我们的根本目的,我们是要进入boot启动,经过两天的分析代码和反复的实验,终于可以进 ...

  7. delphi “Invalid floating point operation.”错误的解决方法

    这两天用webbrower写东西,有时候打开SSL加密站点时会出现”Invalid floating point operation.”的错误,上网搜了下,把解决方法贴上. 导致原因 在Delphi2 ...

  8. mysql中判断表中是否存在某条记录

    SELECT CASE WHEN EXISTS (SELECT * FROM usergroupmap WHERE groupId = groupIdIn AND userId = v_friendI ...

  9. js调用ASP.NET打印代码

    第一步:添加下面的js <script type="text/javascript">           function printsetup() {        ...

  10. hdu 4034 Graph floyd

    题目链接 给出一个有向图各个点之间的最短距离, 求出这个有向图最少有几条边, 如果无法构成图, 输出impossible. folyd跑一遍, 如果dp[i][j] == dp[i][k]+dp[k] ...