UVA 10253 Series-Parallel Networks (树形dp)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud
Series-Parallel Networks
Input: standard input
Output: standard output
Time Limit: 5 seconds
Memory Limit: 32 MB
In this problem you are expected to count two-terminal series-parallel networks. These are electric networks considered topologically or geometrically, that is, without the electrical properties of the elements connected. One of the two terminals can be considered as the source and the other as the sink.
A two-terminal network will be considered series-parallel if it can be obtained iteratively in the following way:
q A single edge is two-terminal series-parallel.
q If G1 and G2 are two-terminal series-parallel, so is the network obtained by identifying the sources and sinks, respectively (parallel composition).
q If G1 and G2 are two-terminal series-parallel, so is the network obtained by identifying the sink of G1with the source of G2 (series composition).
Note here that in a series-parallel network two nodes can be connected by multiple edges. Moreover, networks are regarded as equivalent, not only topologically, but also when interchange of elements in series brings them into congruence; otherwise stated, series interchange is an equivalence operation. For example, the following three networks are equivalent:

Similarly, parallel interchange is also an equivalence operation. For example, the following three networks are also equivalent:

Now, given a number N, you are expected to count the number of two-terminal series parallel networks containing exactly N edges. For example, for N = 4, there are exactly 10 series-parallel networks as shown below:

Input
Each line of the input file contains an integer N (1 £N£ 30) specifying the number of edges in the network.
A line containing a zero for N terminates the input and this input need not be considered.
Output
For each N in the input file print a line containing the number of two-terminal series-parallel networks that can be obtained using exactly N edges.
Sample Input
1
4
15
0
Sample Output
1
10
1399068
(World Final Warm-up Contest, Problem Setter: Rezaul Alam Chowdhury)
这道题目想了好久,最终还是参考了题解。
大致意思就是给你n条边,问你恰好用n条边,能构成几种串并联网络。(串联的各个部分可以任意调换,并联在一起的各个部分也可以任意调换,若通过调换可得,则二者视为等效)
分析:将每个网络都看成一棵树,为每次串联或者并联创建一个结点,并且把串联/并联部分看作该结点的子树,则可以转化为树形dp。
dp[i][j]表示每棵子树叶子数目不超过i,一共有j片叶子的方案数。
f[i]=dp[i-1][i],则根据可重复组合的公式,在有k个恰好包含i片叶子的子树时,其方案数等于C(f[i]+k-1,k);
dp[i][j]=∑(C(f[i]+k-1,k)*d[i-1][j-p*i]) k≥0,k*i<=j
另外注意处理好边界。
对于求这个组合数,想不出较好的方法,最终还是采用了刘汝佳在大白书上写的用double来做的方法(虽然我一度担心会因为double的精度问题会使得有所误差)。
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
typedef long long ll;
ll dp[][];
ll f[];
ll C(ll n,int m)
{
double ret=;
for(ll i=n+-m;i<=n;i++)
{
ret*=i;
}
for(int i=;i<=m;i++)ret/=i;
return (ll)(ret+0.5);
}
int main()
{
ios::sync_with_stdio(false);
int n=;
f[]=;
for(int i=;i<=n;i++){dp[][i]=;dp[i][]=;}
for(int i=;i<=n;i++)dp[i][]=;
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
{
dp[i][j]=;
for(int k=;i*k<=j;k++)
{
dp[i][j]+=C(f[i]+k-,k)*dp[i-][j-i*k];
}
}
f[i+]=dp[i][i+];
}
for(int i=;i<=n;i++)f[i]*=2LL;
while(cin>>n&&n)
{
cout<<f[n]<<endl;
}
}
UVA 10253 Series-Parallel Networks (树形dp)的更多相关文章
- UVa 12186 - Another Crisis(树形DP)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVA - 12186 Another Crisis (树形DP)
思路:dp[i]表示让上司i签字至少需要多少工人签字. 转移方程:将i的所有节点根据所需工人数量升序排序,设i需要k个下属签字,dp[i] = sum{dp[v]| 0 <= v & ...
- UVA - 1218 Perfect Service (树形DP)
思路:dp[i][0]表示i是服务器:dp[i][1]表示i不是服务器,但它的父节点是服务器:dp[i][2]表示i和他的父亲都不是服务器. 转移方程: d[u][0] += min(d[ ...
- UVa 1218 - Perfect Service(树形DP)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVA 1220 Party at Hali-Bula (树形DP)
求一棵数的最大独立集结点个数并判断方案是否唯一. dp[i][j]表示以i为根的子树的最大独立集,j的取值为选和不选. 决策: 当选择i时,就不能选择它的子结点. 当不选i时,它的子结点可选可不选. ...
- UVa 10859 - Placing Lampposts 树形DP 难度: 2
题目 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&a ...
- UVA - 1218 Perfect Service(树形dp)
题目链接:id=36043">UVA - 1218 Perfect Service 题意 有n台电脑.互相以无根树的方式连接,现要将当中一部分电脑作为server,且要求每台电脑必须连 ...
- 树形DP UVA 1292 Strategic game
题目传送门 /* 题解:选择一个点,它相邻的点都当做被选择,问最少选择多少点将所有点都被选择 树形DP:dp[i][0/1]表示当前点选或不选,如果选,相邻的点可选可不选,取最小值 */ /***** ...
- uva 1292 树形dp
UVA 1292 - Strategic game 守卫城市,城市由n个点和n-1条边组成的树,要求在点上安排士兵,守卫与点相连的边.问最少要安排多少士兵. 典型的树形dp.每一个点有两个状态: dp ...
随机推荐
- hdu 3460
算法:字典树 题意:给你一些单词,有一台打印机只能进行以下三种操作 1.读入 2.删除 3.打印 让你输出最少的操作次数将这些单词全部打印出来: (字典树节点-1)*2 表示读入和删除操作: 打印操 ...
- 【5】说说Laravel5的blade模板
首先看一下以前的程序 routes.php PagesController.php resources/views/pages/about.blade.php 现在我们来简单的使用一下blade模板的 ...
- ubuntu中安装eclipse
1.下载eclipse安装包 http://mirror.neu.edu.cn/eclipse/technology/epp/downloads/release/kepler/SR2/eclipse- ...
- -webkit-appearance: none;
今天在web群里聊天的时候,发现了这个东东,我好像不怎么认识他,于是查了下关于他的信息: 抄的例子, ----------- IOS环境下的按钮都是经过美化的,但通常我们在设计web app的时候不需 ...
- apache用户认证、默认主机、301跳转
我更正论坛一个同学帖子(今天坑我一下午):原文http://www.apelearn.com/bbs/foru ... 3%BB%A7%C8%CF%D6%A4 apache用户认证.默认主机.301跳 ...
- Android DrawerLayout 点击事情穿透
今天使用DrawerLayout做网易4.4版本侧边栏发现点击DrawerLayout空白部分,下面部分content会获得点击事件.解决方法是在<!-- The navigation draw ...
- 关于java.sql.SQLRecoverableException: Closed Connection异常的解决方案(转)
在项目中碰到了一个应用异常,从表象来看应用僵死.查看Weblogic状态为Running,内存无溢出,但是出现多次线程堵塞.查看Weblogic日志,发现程序出现多次Time Out. 我们知道,We ...
- ThreadPoolExecutor参数解析
ThreadPoolExecutor是一个非常重要的类,用来构建带有线程池的任务执行器,通过配置不同的参数来构造具有不同规格线程池的任务执行器. 写在前面的是: 线程池和任务执行器,线程池的定义比较直 ...
- RFC3261--sip
本文转载自 http://www.ietf.org/rfc/rfc3261.txt 中文翻译可参考 http://wenku.baidu.com/view/3e59517b1711cc7931b716 ...
- UVa1399.Ancient Cipher
题目链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...