Chinese Mahjong

Mahjong () is a game of Chinese origin usually played by four persons with tiles resembling dominoes and bearing various designs, which are drawn and discarded until one player wins with a hand of four combinations of three tiles each and a pair of matching tiles.

A set of Mahjong tiles will usually differ from place to place. It usually has at least 136 tiles, most commonly 144, although sets originating from America or Japan will have more. The 136-tile Mahjong includes:

Dots: named as each tile consists of a number of circles. Each circle is said to represent copper (tong) coins with a square hole in the middle. In this problem, they're represented by 1T, 2T, 3T, 4T, 5T, 6T, 7T, 8T and 9T.

Bams: named as each tile (except the 1 Bamboo) consists of a number of bamboo sticks. Each stick is said to represent a string (suo) that holds a hundred coins. In this problem, they're represented by 1S, 2S, 3S, 4S, 5S, 6S, 7S, 8S and 9S.

Craks: named as each tile represents ten thousand (wan) coins, or one hundred strings of one hundred coins. In this problem, they're represented by 1W, 2W, 3W, 4W, 5W, 6W, 7W, 8W and 9W.

Wind tiles: East, South, West, and North. In this problem, they're represented by DONG, NAN, XI, BEI.

Dragon tiles: red, green, and white. The term dragon tile is a western convention introduced by Joseph Park Babcock in his 1920 book introducing Mahjong to America. Originally, these tiles are said to have something to do with the Chinese Imperial Examination. The red tile means you pass the examination and thus will be appointed a government official. The green tile means, consequently you will become financially well off. The white tile (a clean board) means since you are now doing well you should act like a good, incorrupt official. In this problem, they're represented by ZHONG, FA, BAI.

There are 9*3+4+3=34 kinds, with exactly 4 tiles of each kind, so there are 136 tiles in total.

To who may be interested, the 144-tile Mahjong also includes:

Flower tiles:

typically optional components to a set of mahjong tiles, often contain artwork on their tiles. There are exactly one tile of each kind, so 136+8=144 tiles in total. In this problem, we don��t consider these tiles.

Chinese Mahjong is very complicated. However, we only need to know very few of the rules in order to solve this problem. A meldis a certain set of tiles in one's hand. There are three kinds of melds you need to know (to who knows Mahjong already, kong is not considered):

Pong: A set of three identical titles. Example: ;.

Chow: A set of three suited tiles in sequence. All three tiles must be of the same suites. Sequences of higher length are not permissible (unless it forms more than one meld). Obviously, wind tiles and dragon tiles can never be involved in chows. Example:;.

Eye: The pair, while not a meld, is the final component to the standard hand. It consists of any two identical tiles.

A player wins the round by creating a standard mahjong hand. That means, the hand consists of an eye and several (possible zero) pongs and chows. Note that each title can be involved in exactly one eye/pong/chow.

When a hand is one tile short of wining, the hand is said to be a ready hand, or more figuratively, 'on the pot'. The player holding a ready hand is said to be waiting for certain tiles. For example

is waiting for , and .

To who knows more about Mahjong: don't consider special winning hands such as ''.

Input

The input consists of at most 50 test cases. Each case consists of 13 tiles in a single line. The hand is legal (e.g. no invalid tiles, exactly 13 tiles). The last case is followed by a single zero, which should not be processed.

Output

For each test case, print the case number and a list of waiting tiles sorted in the order appeared in the problem description (1T~9T, 1S~9S, 1W~9W, DONG, NAN, XI, BEI, ZHONG, FA, BAI). Each waiting tile should be appeared exactly once. If the hand is not ready, print a message 'Not ready' without quotes.

Sample Input

1S 1S 2S 2S 2S 3S 3S 3S 7S 8S 9S FA FA
1S 2S 3S 4S 5S 6S 7S 8S 9S 1T 3T 5T 7T
0

Output for the Sample Input

Case 1: 1S 4S FA
Case 2: Not ready

题目大意:给出13张麻将牌,问在取一张牌就可以胡牌的牌,所处所有满足的情况。这里的胡牌不需要考虑太多,只需要满足存在一个对子, 而其他的全是3个顺或者3个相同的就可以了,一些特殊的胡牌不需要考虑。

解题思路:将所有给出的麻将牌转化成数字进行处理,对应的用一个数组统计牌的个数cnt[i]表示标号为i的麻将牌有cnt[i]张。因为存在特殊的牌面,所以可以将特殊牌面的标号分开,这样在dfs的过程中就无需考虑连续的标号是否是顺子的问题。接下来就是枚举所有可能拿到的牌(出现过4次的不能再取),加入后用dfs判断是否可以胡牌,因为只有三种情况,dfs的时候直接写出来就可以了,注意对子只出现一次。

#include <stdio.h>
#include <string.h>
const int N = 105; int cnt[N], answer[N];
const char sign[] = "TSW";
const char sen[][10] = {"BAI", "DONG", "NAN", " ", "XI", "BEI", " ", "ZHONG", "FA"}; int changeOne(char c) {
if (c == 'T') return 0;
else if (c == 'S') return 1;
else if (c == 'W') return 2;
} int changeTwo(char a, char b) {
if (a == 'D' && b == 'O') return 31;
else if (a == 'N' && b == 'A') return 32;
else if (a == 'X' && b == 'I') return 34;
else if (a == 'B' && b == 'E') return 35;
else if (a == 'Z' && b == 'H') return 37;
else if (a == 'F' && b == 'A') return 38;
else if (a == 'B' && b == 'A') return 40;
else return -1;
} void handle(char str[]) {
memset(cnt, 0, sizeof(cnt));
cnt[10] = cnt[20] = cnt[30] = cnt[33] = cnt[36] = cnt[39] = 5;
int n = 0, len = strlen(str), cur;
for (int i = 0; i < len - 1; i++) {
if (str[i] > '0' && str[i] <= '9') {
cur = 0;
cur += str[i++] - '0';
cur += changeOne(str[i++]) * 10;
cnt[cur]++;
}
else {
cur = changeTwo(str[i], str[i + 1]);
if (cur > 0)
cnt[cur]++;
}
}
} bool dfs(int sum, int flag) {
if (sum >= 14) return true; for (int i = 1; i <= 40; i++) {
if (cnt[i] >= 3 && cnt[i] < 5) {
cnt[i] -= 3;
if (dfs(sum + 3, flag)) {
cnt[i] += 3;
return true;
}
cnt[i] += 3;
}
if (!flag && cnt[i] >= 2 && cnt[i] < 5) {
cnt[i] -= 2;
if (dfs(sum + 2, 1)) {
cnt[i] += 2;
return true;
}
cnt[i] += 2;
} if (cnt[i] && cnt[i + 1] && cnt[i + 2] && cnt[i] < 5 && cnt[i + 1] < 5 && cnt[i + 2] < 5) {
cnt[i]--, cnt[i + 1]--, cnt[i + 2]--;
if (dfs(sum + 3, flag)) {
cnt[i]++, cnt[i + 1]++, cnt[i + 2]++;
return true;
}
cnt[i]++, cnt[i + 1]++, cnt[i + 2]++;
}
}
return false;
} void put(int cur) {
int a = cur / 10, b = cur % 10;
if (a < 3)
printf(" %d%c", b, sign[a]);
else
printf(" %s", sen[b]);
} int main() {
char str[N];
int cas = 1;
while (gets(str)) {
if (strcmp(str, "0") == 0)
break;
memset(answer, 0, sizeof(answer));
int t = 0; handle(str); for (int i = 1; i <= 40; i++) {
if (cnt[i] >= 4) continue;
cnt[i]++;
if (dfs(0, 0))
answer[t++] = i;
cnt[i]--;
}
printf("Case %d:", cas++);
if (t)
for (int i = 0; i < t; i++)
put(answer[i]);
else
printf(" Not ready");
printf("\n");
}
return 0;
}

uva 11210 Chinese Mahjong(暴力搜索)的更多相关文章

  1. UVa 11210 Chinese Mahjong (暴力,递归寻找)

    题意:这个题意.有点麻烦,就是说给定13张牌,让你求能“听”的牌.(具体的见原题) 原题链接: https://uva.onlinejudge.org/index.php?option=com_onl ...

  2. UVa 11210 - Chinese Mahjong

    解题报告:麻将的规则这里就不说了,这题我们可以用暴力的方法,所以我们应该这样枚举,即将34张牌的每一张牌都放到原来的十三张牌里面去,所以这时我们只要判断这十四张牌能不能胡,因为若要胡的话一定要有一个对 ...

  3. UVa 11210 - Chinese Mahjong 模拟, 枚举 难度: 0

    题目 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&a ...

  4. ACM 暴力搜索题 题目整理

    UVa 129 Krypton Factor 注意输出格式,比较坑爹. 每次要进行处理去掉容易的串,统计困难串的个数. #include<iostream> #include<vec ...

  5. hdu 4740 The Donkey of Gui Zhou(暴力搜索)

    题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=4740 [题意]: 森林里有一只驴和一只老虎,驴和老虎互相从来都没有见过,各自自己走过的地方不能走第二次 ...

  6. hdu 1427 速算24点 dfs暴力搜索

    速算24点 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Problem De ...

  7. UVA.12716 GCD XOR (暴力枚举 数论GCD)

    UVA.12716 GCD XOR (暴力枚举 数论GCD) 题意分析 题意比较简单,求[1,n]范围内的整数队a,b(a<=b)的个数,使得 gcd(a,b) = a XOR b. 前置技能 ...

  8. 随手练——洛谷-P1151(枚举与暴力搜索)

    枚举 #include <iostream> using namespace std; int main() { ; cin >> k; ; i < ; i++) { ) ...

  9. UVA.10305 Maximum Product (暴力)

    UVA.10305 Maximum Product (暴力) 题意分析 直接枚举起点和重点,然后算出来存到数组里面,sort然后取最大值即可. 代码总览 #include <iostream&g ...

随机推荐

  1. Laravel Cheat 表 http://cheats.jesse-obrien.ca/#

    Laravel Cheat Sheet Toggle Code Comments PDF Version Github Laravel 3 Docs Laravel 4 Docs Artisan ph ...

  2. 代码实现Layout android:layout_alignParentRight

    代码实现Layout android:layout_alignParentRight 例如: android:id="@+id/account_option" android:la ...

  3. JavaScript 之 call apply bind

    关键字 this 绑定的方法 this的动态切换,固然为JavaScript创造了巨大的灵活性,但也使得编程变得困难和模糊.有时,需要把this固定下来,避免出现意想不到的情况.JavaScript提 ...

  4. (转)通过在 Page 指令或 配置节中设置 validateRequest=false 可以禁用请求验证

    通过在 Page 指令或 配置节中设置 validateRequest=false 可以禁用请求验证 说明:   请求验证过程检测到有潜在危险的客户端输入值,对请求的处理已经中止.该值可能指示危及应用 ...

  5. 视图View

    视图UI层的HTML,JavaScript,Css等元素 asp.net mvc 框架支持惯例优先配置原则 视图路径:view/controller名/Action \view\home\index. ...

  6. 《第一行代码》学习笔记5-活动Activity(3)

    1.Menu:让菜单得到展示的同时,不占用任何屏幕的空间. public boolean onCreateOptionsMenu(Menu menu){ getMenuInflater().infla ...

  7. mysql 常用语法

    --创建数据库 CREATE DATABASE DB_NAME; --选中数据库 USE DB_NAME; --列出数据库列表 SHOW DATABASES; --删除数据库 DROP DATABAS ...

  8. Bootstrap 字形图标(Glyphicons)

    http://w3c.3306.biz/bootstrap/eg/bootstrap--glyphicons-list.html

  9. Form 表单常用正则验证 (收藏)

    1.^\d+$ //匹配非负整数(正整数 + 0) 2.^[0-9]*[1-9][0-9]*$ //匹配正整数 3.^((-\d+)|(0+))$ //匹配非正整数(负整数 + 0) 4.^-[0-9 ...

  10. Lambda表达式 之 C#

    Lambda表达式 "Lambda表达式"是一个匿名函数,是一种高效的类似于函数式编程的表达式,Lambda简化了开发中需要编写的代码量.它可以包含表达式和语句,并且可用于创建委托 ...