D - (例题)欧拉函数性质

Crawling in process... Crawling failed Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu

Submit Status

Description

Bamboo Pole-vault is a massively popular sport in Xzhiland. And Master Phi-shoe is a very popular coach for his success. He needs some bamboos for his students, so he asked his assistant Bi-Shoe to go to the market and buy them. Plenty of Bamboos of all possible integer lengths (yes!) are available in the market. According to Xzhila tradition,

Score of a bamboo = Φ (bamboo's length)

(Xzhilans are really fond of number theory). For your information, Φ (n) = numbers less than n which are relatively prime (having no common divisor other than 1) to n. So, score of a bamboo of length 9 is 6 as 1, 2, 4, 5, 7, 8 are relatively prime to 9.

The assistant Bi-shoe has to buy one bamboo for each student. As a twist, each pole-vault student of Phi-shoe has a lucky number. Bi-shoe wants to buy bamboos such that each of them gets a bamboo with a score greater than or equal to his/her lucky number. Bi-shoe wants to minimize the total amount of money spent for buying the bamboos. One unit of bamboo costs 1 Xukha. Help him.

Input

Input starts with an integer T (≤ 100), denoting the number of test cases.

Each case starts with a line containing an integer n (1 ≤ n ≤ 10000) denoting the number of students of Phi-shoe. The next line contains n space separated integers denoting the lucky numbers for the students. Each lucky number will lie in the range [1, 106].

Output

For each case, print the case number and the minimum possible money spent for buying the bamboos. See the samples for details.

Sample Input

3

5

1 2 3 4 5

6

10 11 12 13 14 15

2

1 1

Sample Output

Case 1: 22 Xukha

Case 2: 88 Xukha

Case 3: 4 Xukha

题目大意:这道题本质上的意思就是给你一个数N,让你寻找最小的k满足&(k)>=N(&指的是欧拉函数)

思路分析:考察了欧拉函数的简单性质,即满足&(k)>=N的最小数为N+1Z之后的第一个素数

代码:

#include<iostream>
#include<cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
typedef long long ll;
const int maxn=1e6+;
int phi[maxn];
int prime[maxn];
bool check[maxn];
int tot;
void make_phi()
{
tot=;
memset(check,true,sizeof(check));
phi[]=;
for(int i=;i<=maxn;i++)
{
if(check[i])
{
prime[tot++]=i;
phi[i]=i-;
}
for(int j=;j<tot&&i*prime[j]<=maxn;j++)
{
check[i*prime[j]]=false;
if(i%prime[j]==)
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
else prime[i*prime[j]]=phi[i]*(prime[j]-);
}
}
}
int kase;
int main()
{
int T;
make_phi();
scanf("%d",&T);
kase=;
ll num;
while(T--)
{
int n;
scanf("%d",&n);
ll ans=;
while(n--)
{
scanf("%lld",&num);
ll k=num+;
for(ll i=k;;i++)
{
if(check[i])
{
ans+=i;
break;
}
}
}
printf("Case %d: %lld Xukha\n",++kase,ans);
}
}

lightOJ1370 欧拉函数性质的更多相关文章

  1. lightoj1370欧拉函数/素数筛

    这题有两种解法,1是根据欧拉函数性质:素数的欧拉函数值=素数-1(可根据欧拉定义看出)欧拉函数定义:小于x且与x互质的数的个数 #include<map> #include<set& ...

  2. HDU 6390 GuGuFishtion(莫比乌斯反演 + 欧拉函数性质 + 积性函数)题解

    题意: 给定\(n,m,p\),求 \[\sum_{a=1}^n\sum_{b=1}^m\frac{\varphi(ab)}{\varphi(a)\varphi(b)}\mod p \] 思路: 由欧 ...

  3. LightOJ1298 One Theorem, One Year(DP + 欧拉函数性质)

    题目 Source http://www.lightoj.com/volume_showproblem.php?problem=1298 Description A number is Almost- ...

  4. HDU2824【欧拉函数性质】

    思路: 打表. 利用公式. 类似素数打表一样. #include<bits/stdc++.h> using namespace std; const int N=3e6+10; bool ...

  5. HDOJ 1787 GCD Again(欧拉函数)

    GCD Again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  6. Codeforces Round #538 (Div. 2) F 欧拉函数 + 区间修改线段树

    https://codeforces.com/contest/1114/problem/F 欧拉函数 + 区间更新线段树 题意 对一个序列(n<=4e5,a[i]<=300)两种操作: 1 ...

  7. hdu2824 The Euler function(欧拉函数个数)

    版权声明:本文为博主原创文章,未经博主同意不得转载. vasttian https://blog.csdn.net/u012860063/article/details/36426357 题目链接:h ...

  8. LightOJ 1370- Bi-shoe and Phi-shoe (欧拉函数)

    题目大意:一个竹竿长度为p,它的score值就是比p长度小且与且与p互质的数字总数,比如9有1,2,4,5,7,8这六个数那它的score就是6.给你T组数据,每组n个学生,每个学生都有一个幸运数字, ...

  9. 【BZOJ4173】数学 欧拉函数神题

    [BZOJ4173]数学 Description Input 输入文件的第一行输入两个正整数 . Output 如题 Sample Input 5 6 Sample Output 240 HINT N ...

随机推荐

  1. Sicily 1194. Message Flood

    题目地址:1194. Message Flood 思路: 不区分大小写,先全部转化为小写,用stl提供的函数做会很方便. 具体代码如下: #include <iostream> #incl ...

  2. 使用Jquery解决Asp.Net中下拉列表值改变后访问服务器刷新界面。

    使用DropDownList控件时,改变选项时,获取服务端数据库数据并刷新界面数据. 1. 绑定DropDownList控件SelectedIndexChanged事件. 2. AutoPortBac ...

  3. Spring学习笔记--依赖注入

    依赖注入和控制反转:http://baitai.iteye.com/blog/792980出自李刚<轻量级 Java EE 企业应用实战> Java应用是一种典型的依赖型应用,它就是由一些 ...

  4. 树莓派设置固定ip

    2016发布的rasbian采用的网络机制是dhcpcd: 不能使用以前的修改配置文件/etc/network/interfaces: 新的配置方式保持/etc/network/interfaces不 ...

  5. hdu 畅通工程再续

    http://acm.hdu.edu.cn/showproblem.php?pid=1875 #include <cstdio> #include <cstring> #inc ...

  6. 给Qt生成的exe执行程序添加版本信息

    Windows下的.exe可执行文件的属性中有版本这个信息,含有版本信息.描述.版权等.对于qt程序,要含有这样的信息,那就请如下操作:新建<工程名>.rc文件,在rc文件填入下的信息: ...

  7. Powershell过滤管道结果

    通过管道可以过滤某些对象和对象的属性,这个功能很实用,因为很多时候我们并不是对所有的结果感兴趣,可能只会对某些结果感兴趣.如果要过滤对象可以使用Where-Object:如果要过滤对象的属性,可以使用 ...

  8. android 遍历所有文件夹和子目录搜索文件

    java代码: import java.io.File; import android.app.Activity; import android.os.Bundle; import android.v ...

  9. FreeBsdb FAMP Lamp环境

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAA1IAAAHlCAIAAABwFFq0AAAgAElEQVR4nO3d23WruhYA0JTmciiGTm

  10. PHP常用魔术方法(__call魔术方法:)

    魔术方法  __call <?php //文件名:index.php define('a',__DIR__); include '/IMooc/Loader.php'; spl_autoload ...