tyvj 1049 最长不下降子序列 n^2/nlogn
描述
输入格式
第二行n个数
输出格式
测试样例1
输入
3
1 2 3
输出
3
备注
for each num <=maxint
/******************************
code by drizzle
blog: www.cnblogs.com/hsd-/
^ ^ ^ ^
O O
******************************/
//#include<bits/stdc++.h>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<map>
#include<algorithm>
#include<cmath>
#define ll long long
#define PI acos(-1.0)
#define mod 1000000007
using namespace std;
int n;
int a[];
int dp[];
int main()
{
while(~scanf("%d",&n)){
memset(dp,,sizeof(dp));
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
dp[i]=;
}
int maxn=;
int ans=;
for(int i=;i<=n;i++)
{
maxn=;
for(int j=;j<i;j++)
{
if(a[j]<=a[i]&&dp[j]+>maxn)
maxn=dp[j]+;
}
dp[i]=maxn;
ans=max(ans,maxn);
}
cout<<ans;
}
return ;
}
nlogn 使用upper_bound 与最长上升子序列不同 注意边界判断
ans[i] 表示长度为i的最长的不下降的最后一位的值
/******************************
code by drizzle
blog: www.cnblogs.com/hsd-/
^ ^ ^ ^
O O
******************************/
//#include<bits/stdc++.h>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<map>
#include<algorithm>
#include<cmath>
#define ll long long
#define PI acos(-1.0)
#define mod 1000000007
using namespace std;
int n;
int a[];
int main()
{
while(~scanf("%d",&n)){
memset(dp,,sizeof(dp));
for(int i=;i<n;i++)
scanf("%d",&a[i]);
int maxn=;
int ans[];
int top=;
ans[]=a[];
for(int i=;i<n;i++)
{
if(a[i]>=ans[top])
ans[++top]=a[i];
else
{
int pos=upper_bound(ans,ans+top,a[i])-ans;//指向大于a[i]的第一个元素的位置
ans[pos]=a[i];//更新
}
}
cout<<top<<endl;;
}
return ;
}
tyvj 1049 最长不下降子序列 n^2/nlogn的更多相关文章
- [TYVJ] P1049 最长不下降子序列
最长不下降子序列 描述 Description 求最长不下降子序列的长度 输入格式 InputFormat 第一行为n,表示n个数第二行n个数 输出格式 OutputFormat 最长不下降子 ...
- 【tyvj】P1049 最长不下降子序列
时间: 1000ms / 空间: 131072KiB / Java类名: Main 描述 求最长不下降子序列的长度 输入格式 第一行为n,表示n个数 第二行n个数 输出格式 最长不下降子序列的长度 测 ...
- 最长不下降子序列(LIS)
最长上升子序列.最长不下降子序列,解法差不多,就一点等于不等于的差别,我这里说最长不下降子序列的. 有两种解法. 一种是DP,很容易想到,就这样: REP(i,n) { f[i]=; FOR(j,,i ...
- 最长不下降子序列 O(nlogn) || 记忆化搜索
#include<stdio.h> ] , temp[] ; int n , top ; int binary_search (int x) { ; int last = top ; in ...
- 最长不下降子序列的O(n^2)算法和O(nlogn)算法
一.简单的O(n^2)的算法 很容易想到用动态规划做.设lis[]用于保存第1~i元素元素中最长不下降序列的长度,则lis[i]=max(lis[j])+1,且num[i]>num[j],i&g ...
- 最长不下降子序列//序列dp
最长不下降子序列 时间: 1000ms / 空间: 131072KiB / Java类名: Main 描述 求最长不下降子序列的长度 输入格式 第一行为n,表示n个数第二行n个数 输出格式 最长不下降 ...
- hdu 4604 Deque(最长不下降子序列)
从后向前对已搜点做两遍LIS(最长不下降子序列),分别求出已搜点的最长递增.递减子序列长度.这样一直搜到第一个点,就得到了整个序列的最长递增.递减子序列的长度,即最长递减子序列在前,最长递增子序列在后 ...
- 最长不下降子序列nlogn算法详解
今天花了很长时间终于弄懂了这个算法……毕竟找一个好的讲解真的太难了,所以励志我要自己写一个好的讲解QAQ 这篇文章是在懂了这个问题n^2解决方案的基础上学习. 解决的问题:给定一个序列,求最长不下降子 ...
- SPOJ 4053 - Card Sorting 最长不下降子序列
我们的男主现在手中有n*c张牌,其中有c(<=4)种颜色,每种颜色有n(<=100)张,现在他要排序,首先把相同的颜色的牌放在一起,颜色相同的按照序号从小到大排序.现在他想要让牌的移动次数 ...
随机推荐
- 十大谷歌Google搜索技巧分享
前言:多数人在使用Google搜索的过程是非常低效和无谓的,如果你只是输入几个关键词,然后按搜索按钮,你将是那些无法得到Google全部信息的用户,在这篇文章中,Google搜索专家迈克尔.米勒将向您 ...
- 动态链接库dll键盘钩子后台记录代码示例
//.header #ifndef _DLLHOOK_H_ #define _DLLHOOK_H_ #include <windows.h> #define DLL_EXPORT_FUN ...
- hdu 4614 Vases and Flowers
http://acm.hdu.edu.cn/showproblem.php?pid=4614 直接线段树维护 代码: #include<iostream> #include<cstd ...
- set常见操作:
(1)sadd 向一个集合中添加一个元素.例如:sadd set1 Hello (2)smembers 查看集合中的所有元素.例如:smembers set1 (3)srem 删除集合中一个指定的元素 ...
- Bootstrap非常简单实用的web前端开发框架
今天无意间用firebug看网站的代码发现了Bootstrap,之前从来没有听说过这个东东,于是对它产生了好奇感,通过百度我了解到了Bootstrap是一款非常简单,强悍,实用,移动设备端优先使用的这 ...
- iphone获取当前流量信息
通过读取系统网络接口信息,获取当前iphone设备的流量相关信息,统计的是上次开机至今的流量信息. 代码 悦德财富:https://yuedecaifu.com 1 2 3 4 5 6 7 8 9 1 ...
- EAX、ECX、EDX、EBX寄存器的作用
注意:在计算加法时,实在32位的累加器上进行,并注意类型之间的转换,数据的截取问题 一般寄存器:AX.BX.CX.DXAX:累积暂存器,BX:基底暂存器,CX:计数暂存器,DX:资料暂存器 索引暂存器 ...
- NorFlash和NandFlash区别
Flash编程原理都是只能将1写为0,而不能将0写成1.所以在Flash编程之前,必须将对应的块擦除,而擦除的过程就是将所有位都写为1的过程,块内的所有字节变为0xFF.因此可以说,编程是将相应位 ...
- swift简介
概述 Swift是苹果2014年推出的全新的编程语言,它继承了C语言.ObjC的特性,且克服了C语言的兼容性问题.Swift发展过程中不仅保留了ObjC很多语法特性,它也借鉴了多种现代化语言的特点,在 ...
- php大力力 [030节] php设计系统后台菜单
php大力力 [030节] php设计系统后台菜单 2015-08-28 00:11 开始设计: 2015-08-28 01:29 设计完毕. php大力力 [030节] php设计系统后台菜单 1. ...