Sum Root to Leaf Numbers [LeetCode]
Problem description: http://oj.leetcode.com/problems/sum-root-to-leaf-numbers/
Basic idea: To store the num vector in every node of tree by starting from leaf, the go up util to root.
class Solution {
public:
vector<vector<int>> subNumbers(TreeNode *root) {
vector<vector<int>> sums;
if(root == NULL)
return sums; if(root->left == NULL && root->right == NULL){
vector<int> seq;
seq.push_back(root->val);
sums.push_back(seq);
return sums;
} vector<vector<int>> left_sums = subNumbers(root -> left);
for(auto item: left_sums) {
item.insert(item.begin(), root->val);
sums.push_back(item);
} vector<vector<int>> right_sums = subNumbers(root -> right);
for(auto item: right_sums) {
item.insert(item.begin(), root->val);
sums.push_back(item);
}
return sums;
} int pow10(int n) {
int ret = ;
for(int i = ; i < n; i++)
ret = ret * ; return ret;
} int sumNumbers(TreeNode *root) {
// Note: The Solution object is instantiated only once and is reused by each test case.
int sum = ;
vector<vector<int>> sums = subNumbers(root);
for(auto v : sums){
int tmp_sum = ;
for(int i = v.size() - ; i >= ; i -- ) {
tmp_sum += v[i] * pow10(v.size() - - i);
}
sum += tmp_sum;
}
return sum;
}
};
Sum Root to Leaf Numbers [LeetCode]的更多相关文章
- Sum Root to Leaf Numbers——LeetCode
Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number ...
- Sum Root to Leaf Numbers leetcode java
题目: Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a nu ...
- Leetcode之深度优先搜索(DFS)专题-129. 求根到叶子节点数字之和(Sum Root to Leaf Numbers)
Leetcode之深度优先搜索(DFS)专题-129. 求根到叶子节点数字之和(Sum Root to Leaf Numbers) 深度优先搜索的解题详细介绍,点击 给定一个二叉树,它的每个结点都存放 ...
- 【LeetCode】129. Sum Root to Leaf Numbers 解题报告(Python)
[LeetCode]129. Sum Root to Leaf Numbers 解题报告(Python) 标签(空格分隔): LeetCode 题目地址:https://leetcode.com/pr ...
- LeetCode: Sum Root to Leaf Numbers 解题报告
Sum Root to Leaf Numbers Given a binary tree containing digits from 0-9 only, each root-to-leaf path ...
- 【LeetCode】129. Sum Root to Leaf Numbers (2 solutions)
Sum Root to Leaf Numbers Given a binary tree containing digits from 0-9 only, each root-to-leaf path ...
- LeetCode解题报告—— Sum Root to Leaf Numbers & Surrounded Regions & Single Number II
1. Sum Root to Leaf Numbers Given a binary tree containing digits from 0-9 only, each root-to-leaf p ...
- 23. Sum Root to Leaf Numbers
Sum Root to Leaf Numbers Given a binary tree containing digits from 0-9 only, each root-to-leaf path ...
- [LeetCode] Sum Root to Leaf Numbers 求根到叶节点数字之和
Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number ...
随机推荐
- Devexpress TreeList选择父级联动
Treelist当显示复选框后,父级和子级的复选框没有关联,使用过程中很不便,如图所示 自己给treelist添加父子级联动 /// <summary> /// 初始化TreeList,父 ...
- ODBC连接mysql
配置/etc/odbc.ini 执行命令:isql freeswitch freeswitch 123456 -v 第一个报错: [08S01][unixODBC][MySQL][ODBC 5.3(w ...
- eclipse选中变量,相同变量高亮。
选择Windows->Preferences->Java->Editor->Mark Occurrences,全部选择并保存. 如下图:
- HashCheck
https://github.com/gurnec/HashCheck
- 关于STM32库中 __IO 修饰符(volatile修饰符,反复无常的意思)
STM32例子代码中会有像这样的代码 static __IO uint32_t TimingDelay; 这里边的__IO修饰符不好理解,单从字面可以看出是为IO相关,查其标准库可以得知这个__IO ...
- [SAP ABAP开发技术总结]增强Enhancement
声明:原创作品,转载时请注明文章来自SAP师太技术博客( 博/客/园www.cnblogs.com):www.cnblogs.com/jiangzhengjun,并以超链接形式标明文章原始出处,否则将 ...
- factory工厂模式之简单工厂SimpleFactory
简单工厂(Simple Factory) 又叫静态工厂,是工厂模式三中状态中结构最为简单的.1.主要有一个静态方法,用来接受参数,并根据参数来决定返回实现同一接口的不同类的实例.2.或者针对每个产品, ...
- iOS - Notification 通知
1.Notification 通知中心实际上是在程序内部提供了消息广播的一种机制,它允许我们在低程度耦合的情况下,满足控制器与一个任意的对象进行通信的目的.每一个 iOS 程序(即每一个进程)都有一个 ...
- iOS - UIImagePickerController
前言 NS_CLASS_AVAILABLE_IOS(2_0) @interface UIImagePickerController : UINavigationController <NSCod ...
- Android 呼吸灯流程分析
一.Android呼吸灯Driver实现 1.注册驱动 代码位置:mediatek/kernel/drivers/leds/leds_drv.c 602static struct platform_d ...