Cow Ski Area
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 3323   Accepted: 919

Description

Farmer John's cousin, Farmer Ron, who lives in the mountains of Colorado, has recently taught his cows to ski. Unfortunately, his cows are somewhat timid and are afraid to ski among crowds of people at the local resorts, so FR has decided to construct his own private ski area behind his farm.

FR's ski area is a rectangle of width W and length L of 'land
squares' (1 <= W <= 500; 1 <= L <= 500). Each land square
is an integral height H above sea level (0 <= H <= 9,999). Cows
can ski horizontally and vertically between any two adjacent land
squares, but never diagonally. Cows can ski from a higher square to a
lower square but not the other way and they can ski either direction
between two adjacent squares of the same height.

FR wants to build his ski area so that his cows can travel between
any two squares by a combination of skiing (as described above) and ski
lifts. A ski lift can be built between any two squares of the ski area,
regardless of height. Ski lifts are bidirectional. Ski lifts can cross
over each other since they can be built at varying heights above the
ground, and multiple ski lifts can begin or end at the same square.
Since ski lifts are expensive to build, FR wants to minimize the number
of ski lifts he has to build to allow his cows to travel between all
squares of his ski area.

Find the minimum number of ski lifts required to ensure the cows can
travel from any square to any other square via a combination of skiing
and lifts.

Input

* Line 1: Two space-separated integers: W and L

* Lines 2..L+1: L lines, each with W space-separated integers corresponding to the height of each square of land.

Output

*
Line 1: A single integer equal to the minimal number of ski lifts FR
needs to build to ensure that his cows can travel from any square to any
other square via a combination of skiing and ski lifts

Sample Input

9 3
1 1 1 2 2 2 1 1 1
1 2 1 2 3 2 1 2 1
1 1 1 2 2 2 1 1 1

Sample Output

3
SB题,还花了好长时间,不开心,不写题解了。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <time.h>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#define inf 0x3f3f3f3f
#define mod 10000
typedef long long ll;
using namespace std;
const int N=;
const int M=;
int s,t,n,m,cnt,tim,top,cut,k;
int head[M],dfn[M],low[M],stack1[M];
int num[M],in[M],out[M],vis[M],w[N][N];
int dis[][]= {,,,,-,,,-};
bool flag=false;
struct man {
int to,nxt;
} edg[M*];
void addedg(int u,int v) {
edg[cnt].to=v;
edg[cnt].nxt=head[u];
head[u]=cnt++;//printf("!!!%d %d\n",u,v);system("pause");
}
void init() {
cnt=;
tim=;
top=cut=k=;
memset(head,-,sizeof head);
memset(dfn,,sizeof dfn);
memset(low,,sizeof low);
memset(stack1,,sizeof stack1);
memset(num,,sizeof num);
memset(in,,sizeof in);
memset(out,,sizeof out);
memset(vis,,sizeof vis);
memset(edg,,sizeof edg);
memset(w,,sizeof w);
}
void Tarjan(int u) {
int v;
low[u] = dfn[u] = ++tim;
stack1[top++] = u;
vis[u] = ;
for(int e = head[u]; e != -; e = edg[e].nxt)
{
v = edg[e].to;
if(!dfn[v])
{
Tarjan(v);
low[u] = min(low[u], low[v]);
}
else if(vis[v])
{
low[u] = min(low[u], dfn[v]);
}
}
if(low[u] == dfn[u])
{
cut++;
do
{
v = stack1[--top];
num[v] = cut;
vis[v] = ;
}while(u != v);
}
}
void build(int i,int j,int d)
{
int xx=i+dis[d][];
int yy=j+dis[d][];
int u=i*m+j,v=xx*m+yy;
if(xx>=&&yy<m&&yy>=&&xx<n){
if(w[i][j]>=w[xx][yy])addedg(u,v);
if(w[i][j]<=w[xx][yy])addedg(v,u);
}
return;
}
int main() {
while(~scanf("%d%d",&m,&n)) {
init();
for(int i=; i<n; i++) {
for(int j=; j<m; j++) {
scanf("%d",&w[i][j]);
}
}
for(int i = ; i < n; i++) {
for(int j = ; j < m; j++) {
for(int d = ; d < ; d++) {
build(i,j,d);
}
}
}
for(int i=; i<n*m; i++)if(!dfn[i])Tarjan(i);
for(int i=; i<n*m; i++) {
for(int j=head[i]; j!=-; j=edg[j].nxt) {
int v=edg[j].to;
if(num[i]!=num[v])out[num[i]]++,in[num[v]]++;
}
}
int father=,son=;
for(int i=; i<=cut; i++) {
if(in[i]==)father++;
if(out[i]==)son++;
}
if(cut==)printf("0\n");
else printf("%d\n",max(father,son));
}
return ;
}

POJ2375 Cow Ski Area (强连通)(缩点)的更多相关文章

  1. POJ 2375 Cow Ski Area (强连通分量)

    题目地址:POJ 2375 对每一个点向与之相邻并h小于该点的点加有向边. 然后强连通缩点.问题就转化成了最少加几条边使得图为强连通图,取入度为0和出度为0的点数的较大者就可以.注意,当强连通分量仅仅 ...

  2. [USACO2004][poj2375]Cow Ski Area(在特殊图上用floodfill代替强联通算法)

    http://poj.org/problem?id=2375 题意:一个500*500的矩形,每个格子都有一个高度,不能从高度低的格子滑到高度高的格子(但相等高度可以滑),已知可以在2个相邻格子上加桥 ...

  3. POJ 2375 Cow Ski Area(强连通)

    POJ 2375 Cow Ski Area id=2375" target="_blank" style="">题目链接 题意:给定一个滑雪场, ...

  4. POJ 2375 Cow Ski Area

    Cow Ski Area Time Limit: 1000ms Memory Limit: 65536KB This problem will be judged on PKU. Original I ...

  5. D - Cow Ski Area

    Description Farmer John's cousin, Farmer Ron, who lives in the mountains of Colorado, has recently t ...

  6. poj 2375 Cow Ski Area bfs

    这个题目用tarjan找联通块,缩点,然后统计出入度为0的点理论上是可行的,但问题是会暴栈.考虑到这个题目的特殊性,可以直接用一次bfs找到数字相同且联通的块,这就是一个联通块,然后缩点,统计出入度即 ...

  7. POJ 2375 Cow Ski Area【tarjan】

    题目大意:一个W*L的山,每个山有个高度,当且仅当一个山不比它相邻(有公共边的格子)的山矮时能够滑过去,现在可以装化学电梯来无视山的高度滑雪,问最少装多少电梯使得任意两点都可到达 思路:最后一句话已经 ...

  8. POJ 2375 Cow Ski Area[连通分量]

    题目链接:http://poj.org/problem?id=2375题目大意:一片滑雪场,奶牛只能向相邻的并且不高于他当前高度的地方走.想加上缆车是的奶牛能从低的地方走向高的地方,求最少加的缆车数, ...

  9. BZOJ1051 [HAOI2006]受欢迎的牛 Tarjan 强连通缩点

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1051 题意概括 有n只牛,有m个羡慕关系. 羡慕关系具有传递性. 如果A羡慕B,B羡慕C,那么我们 ...

随机推荐

  1. Processon 一款基于HTML5的在线作图工具

    CSDN的蒋涛不久前在微博上评价说ProcessOn是web版的visio,出于好奇私下对ProcessOn进行了一番研究.最后发现无论是在用户体验上,还是在技术上,ProcessOn都比微软的Vis ...

  2. 将table导出为Excel的标准无乱码写法

    导出为Excel有很多种写法,对于一些复杂的格式,笔者喜欢在后台先拼成一个<table>,再使用Response输出. 如果数据中包含中文或者一些特殊字符,可很多不规范的写法都会导致页面乱 ...

  3. Mac下的SVN客户端工具Cornerstone使用教程

    前面几篇文章我介绍SVN服务器的安装,配置,实战.当然其中也加入了一些客户端测试的命令,使用命令当然是一个非常好的选择,但是对我们人类来说还是喜欢图形化界面的操作的.因此本文将介绍我喜欢的一款SVN客 ...

  4. ODI中web service介绍

    ODI WS架构

  5. Javascript 基础(一)

    一.Js命名规范(变量/函数) (1)使用大小写字母,数字,_ ,$ 可以命名 (2)不能以数字打头 (3)不能使用js的关键字/保留字 (4)区分大小写 (5)单行注释 //多行注释 二.js的数据 ...

  6. php的预定义数组

    PHP预定义变量数组 1.$_SERVER 变量由Web服务器设定或者直接与当前的脚本的执行环境相关联 $_SERVER超级全局变量包含由web服务器创建的信息,它提供了服务器和客户配置及当前请求环境 ...

  7. 关于doctype

    一:html文档类型 doctype为documentype 的简称,是在html页面中声明的XHTML或者HTML的文件类型,正确准确的文件类型的声明,才能使html标签以及CSS样式生效. 声明文 ...

  8. Ubuntu 14.10 下网络流量实时监控ifstat iftop命令详解

    ifstat 介绍 ifstat工具是个网络接口监测工具,比较简单看网络流量 实例 默认使用 #ifstat eth0 eth1 KB/s in KB/s out KB/s in KB/s out 0 ...

  9. 【LeetCode OJ】Populating Next Right Pointers in Each Node

    Problem Link: http://oj.leetcode.com/problems/populating-next-right-pointers-in-each-node/ Just trav ...

  10. OD调试4--绕过nag窗口

    先看一下程序的运行情况 先跳出了一个nag窗口 点确定 又跳出了一个NAG窗口,这是一些程序编写的时候常用的方法,设法让你购买正版软件, 于是今天呢,学会了四种绕过NAG的方法 我们先用OD加载进入这 ...