Cow Ski Area
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 3323   Accepted: 919

Description

Farmer John's cousin, Farmer Ron, who lives in the mountains of Colorado, has recently taught his cows to ski. Unfortunately, his cows are somewhat timid and are afraid to ski among crowds of people at the local resorts, so FR has decided to construct his own private ski area behind his farm.

FR's ski area is a rectangle of width W and length L of 'land
squares' (1 <= W <= 500; 1 <= L <= 500). Each land square
is an integral height H above sea level (0 <= H <= 9,999). Cows
can ski horizontally and vertically between any two adjacent land
squares, but never diagonally. Cows can ski from a higher square to a
lower square but not the other way and they can ski either direction
between two adjacent squares of the same height.

FR wants to build his ski area so that his cows can travel between
any two squares by a combination of skiing (as described above) and ski
lifts. A ski lift can be built between any two squares of the ski area,
regardless of height. Ski lifts are bidirectional. Ski lifts can cross
over each other since they can be built at varying heights above the
ground, and multiple ski lifts can begin or end at the same square.
Since ski lifts are expensive to build, FR wants to minimize the number
of ski lifts he has to build to allow his cows to travel between all
squares of his ski area.

Find the minimum number of ski lifts required to ensure the cows can
travel from any square to any other square via a combination of skiing
and lifts.

Input

* Line 1: Two space-separated integers: W and L

* Lines 2..L+1: L lines, each with W space-separated integers corresponding to the height of each square of land.

Output

*
Line 1: A single integer equal to the minimal number of ski lifts FR
needs to build to ensure that his cows can travel from any square to any
other square via a combination of skiing and ski lifts

Sample Input

9 3
1 1 1 2 2 2 1 1 1
1 2 1 2 3 2 1 2 1
1 1 1 2 2 2 1 1 1

Sample Output

3
SB题,还花了好长时间,不开心,不写题解了。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <time.h>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#define inf 0x3f3f3f3f
#define mod 10000
typedef long long ll;
using namespace std;
const int N=;
const int M=;
int s,t,n,m,cnt,tim,top,cut,k;
int head[M],dfn[M],low[M],stack1[M];
int num[M],in[M],out[M],vis[M],w[N][N];
int dis[][]= {,,,,-,,,-};
bool flag=false;
struct man {
int to,nxt;
} edg[M*];
void addedg(int u,int v) {
edg[cnt].to=v;
edg[cnt].nxt=head[u];
head[u]=cnt++;//printf("!!!%d %d\n",u,v);system("pause");
}
void init() {
cnt=;
tim=;
top=cut=k=;
memset(head,-,sizeof head);
memset(dfn,,sizeof dfn);
memset(low,,sizeof low);
memset(stack1,,sizeof stack1);
memset(num,,sizeof num);
memset(in,,sizeof in);
memset(out,,sizeof out);
memset(vis,,sizeof vis);
memset(edg,,sizeof edg);
memset(w,,sizeof w);
}
void Tarjan(int u) {
int v;
low[u] = dfn[u] = ++tim;
stack1[top++] = u;
vis[u] = ;
for(int e = head[u]; e != -; e = edg[e].nxt)
{
v = edg[e].to;
if(!dfn[v])
{
Tarjan(v);
low[u] = min(low[u], low[v]);
}
else if(vis[v])
{
low[u] = min(low[u], dfn[v]);
}
}
if(low[u] == dfn[u])
{
cut++;
do
{
v = stack1[--top];
num[v] = cut;
vis[v] = ;
}while(u != v);
}
}
void build(int i,int j,int d)
{
int xx=i+dis[d][];
int yy=j+dis[d][];
int u=i*m+j,v=xx*m+yy;
if(xx>=&&yy<m&&yy>=&&xx<n){
if(w[i][j]>=w[xx][yy])addedg(u,v);
if(w[i][j]<=w[xx][yy])addedg(v,u);
}
return;
}
int main() {
while(~scanf("%d%d",&m,&n)) {
init();
for(int i=; i<n; i++) {
for(int j=; j<m; j++) {
scanf("%d",&w[i][j]);
}
}
for(int i = ; i < n; i++) {
for(int j = ; j < m; j++) {
for(int d = ; d < ; d++) {
build(i,j,d);
}
}
}
for(int i=; i<n*m; i++)if(!dfn[i])Tarjan(i);
for(int i=; i<n*m; i++) {
for(int j=head[i]; j!=-; j=edg[j].nxt) {
int v=edg[j].to;
if(num[i]!=num[v])out[num[i]]++,in[num[v]]++;
}
}
int father=,son=;
for(int i=; i<=cut; i++) {
if(in[i]==)father++;
if(out[i]==)son++;
}
if(cut==)printf("0\n");
else printf("%d\n",max(father,son));
}
return ;
}

POJ2375 Cow Ski Area (强连通)(缩点)的更多相关文章

  1. POJ 2375 Cow Ski Area (强连通分量)

    题目地址:POJ 2375 对每一个点向与之相邻并h小于该点的点加有向边. 然后强连通缩点.问题就转化成了最少加几条边使得图为强连通图,取入度为0和出度为0的点数的较大者就可以.注意,当强连通分量仅仅 ...

  2. [USACO2004][poj2375]Cow Ski Area(在特殊图上用floodfill代替强联通算法)

    http://poj.org/problem?id=2375 题意:一个500*500的矩形,每个格子都有一个高度,不能从高度低的格子滑到高度高的格子(但相等高度可以滑),已知可以在2个相邻格子上加桥 ...

  3. POJ 2375 Cow Ski Area(强连通)

    POJ 2375 Cow Ski Area id=2375" target="_blank" style="">题目链接 题意:给定一个滑雪场, ...

  4. POJ 2375 Cow Ski Area

    Cow Ski Area Time Limit: 1000ms Memory Limit: 65536KB This problem will be judged on PKU. Original I ...

  5. D - Cow Ski Area

    Description Farmer John's cousin, Farmer Ron, who lives in the mountains of Colorado, has recently t ...

  6. poj 2375 Cow Ski Area bfs

    这个题目用tarjan找联通块,缩点,然后统计出入度为0的点理论上是可行的,但问题是会暴栈.考虑到这个题目的特殊性,可以直接用一次bfs找到数字相同且联通的块,这就是一个联通块,然后缩点,统计出入度即 ...

  7. POJ 2375 Cow Ski Area【tarjan】

    题目大意:一个W*L的山,每个山有个高度,当且仅当一个山不比它相邻(有公共边的格子)的山矮时能够滑过去,现在可以装化学电梯来无视山的高度滑雪,问最少装多少电梯使得任意两点都可到达 思路:最后一句话已经 ...

  8. POJ 2375 Cow Ski Area[连通分量]

    题目链接:http://poj.org/problem?id=2375题目大意:一片滑雪场,奶牛只能向相邻的并且不高于他当前高度的地方走.想加上缆车是的奶牛能从低的地方走向高的地方,求最少加的缆车数, ...

  9. BZOJ1051 [HAOI2006]受欢迎的牛 Tarjan 强连通缩点

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1051 题意概括 有n只牛,有m个羡慕关系. 羡慕关系具有传递性. 如果A羡慕B,B羡慕C,那么我们 ...

随机推荐

  1. Android google map 两点之间的距离

    在Android google map中,有时候会碰到计算两地的距离,下面的辅助类就可以帮助你计算距离: public class DistanceHelper { /** Names for the ...

  2. Android 应用按两下返回键退出应用程序

    在android应用开发中,有时候应用会用到按两下返回键退出应用的功能,今天介绍一下这个功能,直接上代码: @Override public boolean dispatchKeyEvent(KeyE ...

  3. iphone判断当前网络连接类型

    eachability只能区分出无网络.wifi和wwan(2G&2.5G&3G)类型的网络连接类型,只需重构networkStatusForFlags方法,即可详细区分出2G与3G网 ...

  4. 分享我设计的iOS项目目录结构

    公司新项目就要着手研发了,希望能为这个项目多准备点知识.回想自己做过的项目,目录结构的划分总不如我的心意,有些目录命名不规范导致表达不明确,有些目录因为不具有代表性,导致在实际中不能充分发挥作用,导致 ...

  5. JVM-class文件完全解析-字段表集合

     字段表集合 这个class文件的解析,分析得有点太久了.前面介绍类魔数,次版本号,主板本号,常量池入口,常量池,访问标志,类索引,父类索引和接口索引集合.下面就应该到字段表集合了.  紧接着接口索引 ...

  6. Spark的编译

    由于Spark的运行环境的多样性,如可以运行在hadoop的yarn上,这样就必须要对Spark的源码进行编译.下面介绍一下Spark源码编译的详细步骤: 1.Spark的编译方式:编译的方式可以参考 ...

  7. CentOS 7.0默认使用的是firewall作为防火墙。

    systemctl start firewalld.service#启动firewallsystemctl stop firewalld.service#停止firewallsystemctl dis ...

  8. matlab求曲线长度

    曲线段在上的弧长为采用积分所求弧长s=∫√(1+y'²)dxmatlab求出各点的导数,然后按照上式积分 clear>> x=1:0.1:10;>> y=rand(1,leng ...

  9. hdu 2076

    ps:WA了三次...第一次头脑有点乱,很麻烦的分几种情况讨论,第二次发现,只要分别算出时针和分针的角度,然后一减就行,却忽略了哪个大的问题,第三次加上了绝对值,就好了..就是以后double型比较最 ...

  10. The Blocks Problem

    Description Many areas of Computer Science use simple, abstract domains for both analytical and empi ...