awesome-very-deep-learning is a curated list for papers and code about implementing and training very deep neural networks.

Deep Residual Learning

Deep Residual Networks are a family of extremely deep architectures (up to 1000 layers) showing compelling accuracy and nice convergence behaviors. Instead of learning a new representation at each layer, deep residual networks use identity mappings to learn residuals.

Papers

Implementations

  1. Torch by Facebook AI Research (FAIR), with training code in Torch and pre-trained ResNet-18/34/50/101 models for ImageNet: blogcode
  2. Torch, CIFAR-10, with ResNet-20 to ResNet-110, training code, and curves: code
  3. Lasagne, CIFAR-10, with ResNet-32 and ResNet-56 and training code: code
  4. Neon, CIFAR-10, with pre-trained ResNet-32 to ResNet-110 models, training code, and curves: code
  5. Neon, Preactivation layer implementation: code
  6. Torch, MNIST, 100 layers: blogcode
  7. A winning entry in Kaggle's right whale recognition challenge: blogcode
  8. Neon, Place2 (mini), 40 layers: blogcode
  9. Tensorflow with tflearn, with CIFAR-10 and MNIST: code
  10. Tensorflow with skflow, with MNIST: code
  11. Stochastic dropout in Keras: code
  12. ResNet in Chainer: code
  13. Stochastic dropout in Chainer: code
  14. Wide Residual Networks in Keras: code
  15. ResNet in TensorFlow 0.9+ with pretrained caffe weights: code

In addition, this code by Ryan Dahl helps to convert the pre-trained models to TensorFlow.

Highway Networks

Highway Networks take inspiration from Long Short Term Memory (LSTM) and allow training of deep, efficient networks (with hundreds of layers) with conventional gradient-based methods

Papers

Implementations

  1. Lasagne: code
  2. Caffe: code
  3. Torch: code
  4. Tensorflow: blogcode

Very Deep Learning Theory

Theories in very deep learning concentrate on the ideas that very deep networks with skip connections are able to efficiently approximate recurrent computations (similar to the recurrent connections in the visual cortex) or are actually exponential ensembles of shallow networks

Papers

awesome-very-deep-learning的更多相关文章

  1. Deep learning:五十一(CNN的反向求导及练习)

    前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文 ...

  2. 【深度学习Deep Learning】资料大全

    最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron C ...

  3. 《Neural Network and Deep Learning》_chapter4

    <Neural Network and Deep Learning>_chapter4: A visual proof that neural nets can compute any f ...

  4. Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN

    http://m.blog.csdn.net/blog/wu010555688/24487301 本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep le ...

  5. paper 124:【转载】无监督特征学习——Unsupervised feature learning and deep learning

    来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio c ...

  6. Deep Learning 26:读论文“Maxout Networks”——ICML 2013

    论文Maxout Networks实际上非常简单,只是发现一种新的激活函数(叫maxout)而已,跟relu有点类似,relu使用的max(x,0)是对每个通道的特征图的每一个单元执行的与0比较最大化 ...

  7. Deep Learning 23:dropout理解_之读论文“Improving neural networks by preventing co-adaptation of feature detectors”

    理论知识:Deep learning:四十一(Dropout简单理解).深度学习(二十二)Dropout浅层理解与实现.“Improving neural networks by preventing ...

  8. Deep Learning 19_深度学习UFLDL教程:Convolutional Neural Network_Exercise(斯坦福大学深度学习教程)

    理论知识:Optimization: Stochastic Gradient Descent和Convolutional Neural Network CNN卷积神经网络推导和实现.Deep lear ...

  9. 0.读书笔记之The major advancements in Deep Learning in 2016

    The major advancements in Deep Learning in 2016 地址:https://tryolabs.com/blog/2016/12/06/major-advanc ...

  10. #Deep Learning回顾#之LeNet、AlexNet、GoogLeNet、VGG、ResNet

    CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段 ...

随机推荐

  1. SpringMvc中的反射

    controller中的方法,是通过反射调用的 spring监控controller中的注解,当命令符合某个注解的时候,通过反射,找到这个注解对应的方法,然后调用,处理完成得到返回值,再根据这个返回值 ...

  2. 有关WAMPSERVER 环境搭建 如何修改端口,MySQL数据库的修改

    环境搭建 http://share.weiyun.com/88896747fedd4e8b19afebea18f7684c 一.修改Apache的监听端口 1.在界面中选Apache,弹出隐藏菜单选项 ...

  3. 《CheckboxDemo.java》

    import java.awt.*; import java.applet.Applet; public class CheckboxDemo extends Applet { String Uni[ ...

  4. Android常见控件— — —TextView

    <?xml version="1.0" encoding="utf-8"?><RelativeLayout xmlns:android=&qu ...

  5. 禁用gridview默认点击效果

    cf_gridview.setSelector(new ColorDrawable(Color.TRANSPARENT)); 然后自己给做一个按下的效果xml文件

  6. linux 杀死进程的方法

    # kill -pid 注释:标准的kill命令通常都能达到目的.终止有问题的进程,并把进程的资源释放给系统.然而,如果进程启动了子进程,只杀死父进程,子进程仍在运行,因此仍消耗资源.为了防止这些所谓 ...

  7. iOS上架(转)

    自己的经验总结,有错的话请留言,第一时间更改. 先大概说一下IOSAPP上架的几个步骤(详细步骤见下图): 创建证书请求文件 登录苹果开发者中心生成发布者证书(下载下来要双击一下) 设置APPID(要 ...

  8. TPLink 备份文件bin文件解析

    TPLink 路由器备份文件bin文件 测试路由器 WR885,备份文件加密方式DES,密钥:478DA50BF9E3D2CF linux端: openssl enc -d -des-ecb -nop ...

  9. node.js 学习书籍推荐

    今天向大家推荐一本node.js开发的书籍,本人刚刚看完. 建议:如果你是node.js小白,下边的介绍你可以看一下,如果不是请直接return. <Node.js开发指南>是一本带有开发 ...

  10. java多线程的协作

    java多线程之间相互协作,主要有join,  yield,  interupt(),  sleep,  wait,  notify,  notifyAll; join: 在一个线程A的代码里面调用另 ...