awesome-very-deep-learning
awesome-very-deep-learning is a curated list for papers and code about implementing and training very deep neural networks.
Deep Residual Learning
Deep Residual Networks are a family of extremely deep architectures (up to 1000 layers) showing compelling accuracy and nice convergence behaviors. Instead of learning a new representation at each layer, deep residual networks use identity mappings to learn residuals.
Papers
- Wide Residual Networks (2016) [orginal code], studies wide residual neural networks and shows that making residual blocks wider outperforms deeper and thinner network architectures
- Swapout: Learning an ensemble of deep architectures (2016), improving accuracy by randomly applying dropout, skipforward and residual units per layer
- Deep Networks with Stochastic Depth (2016) [original code], dropout with residual layers as regularizer
- Identity Mappings in Deep Residual Networks (2016) [original code], improving the original proposed residual units by reordering batchnorm and activation layers
- Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning (2016), inception network with residual connections
- Deep Residual Learning for Image Recognition (2015) [original code], original paper introducing residual neural networks
Implementations
- Torch by Facebook AI Research (FAIR), with training code in Torch and pre-trained ResNet-18/34/50/101 models for ImageNet: blog, code
- Torch, CIFAR-10, with ResNet-20 to ResNet-110, training code, and curves: code
- Lasagne, CIFAR-10, with ResNet-32 and ResNet-56 and training code: code
- Neon, CIFAR-10, with pre-trained ResNet-32 to ResNet-110 models, training code, and curves: code
- Neon, Preactivation layer implementation: code
- Torch, MNIST, 100 layers: blog, code
- A winning entry in Kaggle's right whale recognition challenge: blog, code
- Neon, Place2 (mini), 40 layers: blog, code
- Tensorflow with tflearn, with CIFAR-10 and MNIST: code
- Tensorflow with skflow, with MNIST: code
- Stochastic dropout in Keras: code
- ResNet in Chainer: code
- Stochastic dropout in Chainer: code
- Wide Residual Networks in Keras: code
- ResNet in TensorFlow 0.9+ with pretrained caffe weights: code
In addition, this code by Ryan Dahl helps to convert the pre-trained models to TensorFlow.
Highway Networks
Highway Networks take inspiration from Long Short Term Memory (LSTM) and allow training of deep, efficient networks (with hundreds of layers) with conventional gradient-based methods
Papers
- Training Very Deep Networks (2015), introducing highway neural networks
Implementations
Very Deep Learning Theory
Theories in very deep learning concentrate on the ideas that very deep networks with skip connections are able to efficiently approximate recurrent computations (similar to the recurrent connections in the visual cortex) or are actually exponential ensembles of shallow networks
Papers
- Bridging the Gaps Between Residual Learning, Recurrent Neural Networks and Visual Cortex, shows that ResNets with shared weights work well too although having fewer parameters
- Residual Networks are Exponential Ensembles of Relatively Shallow Networks, shows that ResNets behaves just like ensembles of shallow networks in test time. This suggests that in addition to describing neural networks in terms of width and depth, there is a third dimension: multiplicity, the size of the implicit ensemble
awesome-very-deep-learning的更多相关文章
- Deep learning:五十一(CNN的反向求导及练习)
前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文 ...
- 【深度学习Deep Learning】资料大全
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books by Yoshua Bengio, Ian Goodfellow and Aaron C ...
- 《Neural Network and Deep Learning》_chapter4
<Neural Network and Deep Learning>_chapter4: A visual proof that neural nets can compute any f ...
- Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN
http://m.blog.csdn.net/blog/wu010555688/24487301 本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep le ...
- paper 124:【转载】无监督特征学习——Unsupervised feature learning and deep learning
来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio c ...
- Deep Learning 26:读论文“Maxout Networks”——ICML 2013
论文Maxout Networks实际上非常简单,只是发现一种新的激活函数(叫maxout)而已,跟relu有点类似,relu使用的max(x,0)是对每个通道的特征图的每一个单元执行的与0比较最大化 ...
- Deep Learning 23:dropout理解_之读论文“Improving neural networks by preventing co-adaptation of feature detectors”
理论知识:Deep learning:四十一(Dropout简单理解).深度学习(二十二)Dropout浅层理解与实现.“Improving neural networks by preventing ...
- Deep Learning 19_深度学习UFLDL教程:Convolutional Neural Network_Exercise(斯坦福大学深度学习教程)
理论知识:Optimization: Stochastic Gradient Descent和Convolutional Neural Network CNN卷积神经网络推导和实现.Deep lear ...
- 0.读书笔记之The major advancements in Deep Learning in 2016
The major advancements in Deep Learning in 2016 地址:https://tryolabs.com/blog/2016/12/06/major-advanc ...
- #Deep Learning回顾#之LeNet、AlexNet、GoogLeNet、VGG、ResNet
CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段 ...
随机推荐
- 千寻浏览器 1.0 Beta 1(524)(2014年5月27日)
千寻浏览器--又一款新生浏览器今天进入各位浏览迷的视野.千寻浏览器基于IE内核,据传是由百度浏览器的上海团队操刀,在功能定位上,与目前的QQ浏览器有些相似. 千寻来自官方的解释:寻,追寻,探索,又是古 ...
- android平台手电筒开发源代码
android平台手电筒开发源代码,AndroidManifest.xml文件的入口是startapp,这个文件没上传上来,大家可以自己写. 1. [代码]android 1 2 3 4 5 6 7 ...
- python版恶俗古风自动生成器.py
python版恶俗古风自动生成器.py """ python版恶俗古风自动生成器.py 模仿自: http://www.jianshu.com/p/f893291674c ...
- MongoDB 聚合 (转) 仅限于C++开发
MongoDB除了基本的查询功能,还提供了很多强大的聚合工具,其中简单的可计算集合中的文档个数, 复杂的可利用MapReduce做复杂数据分析. 1.count count返回集合中的文档数量 db. ...
- String的两个API,判断指定字符串是否包含另一字符串,在字符串中删除指定字符串。
// 在字符串中删除指定字符串. String phoneNum="1795112345"; phoneNum = phoneNum.replace("17951&quo ...
- HDU 4417 - Super Mario ( 划分树+二分 / 树状数组+离线处理+离散化)
题意:给一个数组,每次询问输出在区间[L,R]之间小于H的数字的个数. 此题可以使用划分树在线解决. 划分树可以快速查询区间第K小个数字.逆向思考,判断小于H的最大的一个数字是区间第几小数,即是答案. ...
- poj蚂蚁问题
问题描述: n只蚂蚁以每秒1cm的速度在长为Lcm的竿子上爬行.当蚂蚁爬到竿子的端点时就会掉落.由于竿子太细,两只蚂蚁相遇时,它们不能交错通过,只能各自反向 爬回去.对于每只蚂蚁,我们知道它距离竿子左 ...
- CodeForces 56E-Domino Principle
E - Domino Principle Time Limit:2000MS Memory Limit:262144KB 64bit IO Format:%I64d & %I6 ...
- BUY LOW, BUY LOWER_最长下降子序列
Description The advice to "buy low" is half the formula to success in the bovine stock mar ...
- js 中对字符串操作的函数
concat() – 将两个或多个字符的文本组合起来,返回一个新的字符串. indexOf() – 返回字符串中一个子串第一处出现的索引.如果没有匹配项,返回 -1 . charAt() – 返回指定 ...