Deep Reinforcement Learning with Double Q-learning

Google DeepMind

  Abstract

  主流的 Q-learning 算法过高的估计在特定条件下的动作值。实际上,之前是不知道是否这样的过高估计是 common的,是否对性能有害,以及是否能从主体上进行组织。本文就回答了上述的问题,特别的,本文指出最近的 DQN 算法,的确存在在玩 Atari 2600 时会 suffer from substantial overestimations。本文提出了 double Q-learning algorithm 可以很好的降低观测到的 overestimation 问题,而且在几个游戏上取得了更好的效果。

  Introduction

  强化学习的目标是对序列决策问题能够学习到一个好的策略,通过优化一个累计未来奖励信号。Q-learning 是最著名的 RL 学习算法之一,但是由于其在预测动作值的时候包含一个最大化的步骤,所以导致会出现过高的预测值,使得学习到不实际的高动作值。

  在之前的工作中,将 overestimation 的问题归咎于 不够灵活的函数估计 以及 noise。本文统一了这些观点,并且表明 当动作值预测的不准确的时候,就会出现 overestimation,而不管估计误差的来源。当然,在学习的过程中,出现不准确的值估计也是正常的,这也说明 overestimation 可能比之前所看的情况更加普遍。

  如果overestimation 的确出现,那么这个开放的问题的确会影响实际的性能。过于优化的值估计在一个问题中是不必要的,如果所有的值都比相对动作参考要均匀的高被保存了,那么我们就不会相信得到的结果策略会更差了。此外,有时候 optimistic 是一件好事情:optimistic in the face of uncertainty is a well-known exploration technique. 然而,如果当预测并且均匀,不集中在 state上,那么他们可能对结果的策略产生坏的影响。Thrun 等人给出了特定的例子,即:导致次优的策略。

  为了测试在实际上是否会出现 overestimation,我们探讨了最近 DQN 算法的性能。关于 DQN 可以参考相关文章,此处不赘述了。可能比较奇怪的是,这种 DQN设置 仍然存在过高的估计动作的 value 这种情况。

  作者表明,在 Double Q-learning算法背后的idea,可以很好的和任意的函数估计相结合,包括神经网络,我们利用此构建了新的算法,称: Double DQN。本文算法不但可以产生更加精确的 value estimation,而且在几个游戏上得到了更高的分数。这样表明,在 DQN上的确存在 overestimation 的问题,并且最好将其降低或者说消除。

  Background

  为了解决序列决策问题,我们学习对每一个动作的最优值的估计,定义为:当采取该动作,并且以后也采用最优的策略时,期望得到的将来奖励的总和。在给定一个策略 $\pi$ 之后,在状态 s下的一个动作 a 的真实值为:

  $Q_{\pi}(s, a) = E[R_1 + \gamma R_2 + ... | S_0 =s, A_0 = a, \pi]$,

  最优的值就是 $Q_*(s, a) = max_{\pi} Q_{\pi}(s, a)$。一个优化的策略就是从每一个状态下选择最高值动作。

  预测最优动作值 可以利用 Q-learning算法。大部分有意思的问题都无法在所有状态下都计算出其动作值。相反,我们学习一个参数化的动作函数 Q(s, a; \theta_t)。在状态St下,采取了动作 $A_t$之后标准的 Q-learning 更新,然后观测到奖励 $R_{t+1}$以及得到转换后的状态 $S_{t+1}$:

    其中,目标 $Y_t^Q$ 的定义为:  

  这个更新非常类似于随机梯度下降,朝向 target value $Y^Q_t$ 更新当前值 Q(S_t, A_t; \theta_t)。

  Deep Q-Networks.

  一个DQN是一个多层的神经网络,给定一个状态 s,输出一个动作值的向量 $Q(s, *; \theta)$,其中,$\theta$ 是网络的参数。对于一个 n维 的状态空间,动作空间是 m 个动作,神经网络是一个函数将其从 n维空间映射到 m维。两个重要的点分别是 target network 的使用 以及 experience replay的使用。target network,参数为 $\theta^-$,和 online的网络一样,除了其参数是从 online network 经过 某些 steps之后拷贝下来的。目标网络是:

  对于 experience replay,观测到的 transitions 都被存贮起来,并且随机的从其中进行采样,用来更新网络。target network 和 experience replay 都明显的改善了最终的 performance。

  Double Q-learning

  在标准的 Q-learning 以及 DQN 上的 max operator,用相同的值来选择和评价一个 action。这使得其更偏向于选择 overestimated values,导致次优的估计值。为了防止此现象,我们可以从评价中将选择独立出来,这就是 Double Q-learning 背后的 idea。

  在最开始的 Double Q-learning算法中,通过随机的赋予每一个 experience 来更新两个 value functions 中的一个 来学习两个value function,如此,就得到两个权重的集合,$\theta$ 以及 $\theta '$。对于每一次更新,其中一个权重集合用来决定贪婪策略,另一个用来决定其 value。做一个明确的对比,我们可以首先排解 selection 和 evaluation,重写公式2,得到:

  那么, Double Q-learning error可以写为:  

  注意到 action 的选择,在 argmax,仍然属于 online weights $\theta_t$。这意味着,像 Q-learning一样,我们仍然可以根据当前值,利用贪婪策略进行 value 的估计。然而,我们利用第二个权重 $\theta _t '$来更加公平的评价该策略。第二个权重的集合,可以通过交换 两个权重的角色进行更新。

     OverOptimism due to estimation errors:

  

  

  

  

论文笔记之:Deep Reinforcement Learning with Double Q-learning的更多相关文章

  1. 论文笔记——A Deep Neural Network Compression Pipeline: Pruning, Quantization, Huffman Encoding

    论文<A Deep Neural Network Compression Pipeline: Pruning, Quantization, Huffman Encoding> Prunin ...

  2. 论文笔记:Deep feature learning with relative distance comparison for person re-identification

    这篇论文是要解决 person re-identification 的问题.所谓 person re-identification,指的是在不同的场景下识别同一个人(如下图所示).这里的难点是,由于不 ...

  3. 论文笔记:Deep Residual Learning

    之前提到,深度神经网络在训练中容易遇到梯度消失/爆炸的问题,这个问题产生的根源详见之前的读书笔记.在 Batch Normalization 中,我们将输入数据由激活函数的收敛区调整到梯度较大的区域, ...

  4. 论文笔记:Deep Attentive Tracking via Reciprocative Learning

    Deep Attentive Tracking via Reciprocative Learning NIPS18_tracking Type:Tracking-By-Detection 本篇论文地主 ...

  5. 论文笔记 — L2-Net: Deep Learning of Discriminative Patch Descriptor in Euclidean Space

    论文: 本文主要贡献: 1.提出了一种新的采样策略,使网络在少数的epoch迭代中,接触百万量级的训练样本: 2.基于局部图像块匹配问题,强调度量描述子的相对距离: 3.在中间特征图上加入额外的监督: ...

  6. 论文笔记系列-iCaRL: Incremental Classifier and Representation Learning

    导言 传统的神经网络都是基于固定的数据集进行训练学习的,一旦有新的,不同分布的数据进来,一般而言需要重新训练整个网络,这样费时费力,而且在实际应用场景中也不适用,所以增量学习应运而生. 增量学习主要旨 ...

  7. 【论文笔记】A review of applications in federated learning(综述)

    A review of applications in federated learning Authors Li Li, Yuxi Fan, Mike Tse, Kuo-Yi Lin Keyword ...

  8. 论文笔记之:MatchNet: Unifying Feature and Metric Learning for Patch-Based Matching

    MatchNet: Unifying Feature and Metric Learning for Patch-Based Matching CVPR  2015 本来都写到一半了,突然笔记本死机了 ...

  9. 论文笔记:Visual Question Answering as a Meta Learning Task

    Visual Question Answering as a Meta Learning Task ECCV 2018 2018-09-13 19:58:08 Paper: http://openac ...

  10. 论文笔记(4)-Deep Boltzmann Machines

    Deep Boltzmann Machines是hinton的学生写的,是在RBM基础上新提出的模型,首先看一下RBM与BM的区别 很明显可以看出BM是在隐含层各个节点以及输入层各个节点都是相互关联的 ...

随机推荐

  1. 访问FLASH设备-W25X16

    /************************************* *文件名称:w25x16_spi.c * *功能描述:访问和写入数据到闪存w25x16 * *建立日期:2016-03-1 ...

  2. SharePoint 2013 搜索体系结构

    博客地址:http://blog.csdn.net/FoxDave 本文参考自微软官方的Chart,记录一下,算是自己对这部分知识的总结. Microsoft® SharePoint® Server ...

  3. SharePoint表单和工作流 - Nintex篇(一)

    博客地址 http://blog.csdn.net/foxdave 本篇开始我将带大家去认识一个第三方的表单工作流工具--Nintex. 本篇将对该工具做一些简单的介绍. Nintex公司成立于200 ...

  4. Oracle 12c与GoldenGate 12c的一些问答

    1. 如何知道一个12c DB是否为容器数据库?(1) container DBSQL> select cdb from v$database;CDB---YES (2) non contain ...

  5. jQuery easyui 提示框

    1:弹出提示窗的使用 (1)屏幕右下弹出提示窗口: $.messager.show({ title:'My Title', msg:'Message will be closed after 4 se ...

  6. iOS 获取IP地址

    一.获取本机IP地址 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 #import <ifadd ...

  7. 解决:未找到setenv命令

    在Ubuntu12.04中配置python环境变量:setenv PATH "$PATH:/usr/local/bin/python",提示未找到setenv命令. 为什么呢?这是 ...

  8. Angularjs相关理论

    1.AngularJS的工作流程: (1)浏览器载入HTML,然后把它解析成DOM (2)浏览器载入angularjs脚本 (3)AngularJS等到DOMContentLoaded事件触发 (4) ...

  9. coreData旧版本增加字段,新版本是否可以继续使用旧版本内容的测试(MagicalRecord的使用)

    coreData使用第三方库MagicalRecord, 参考文章:http://blog.csdn.net/kuizhang1/article/details/21200367 coreData数据 ...

  10. 找不到请求的 .Net Framework Data Provider。可能没有安装.

    学习中遇到的问题: 找不到请求的 .Net Framework Data Provider.可能没有安装. 找到的解决方法 解决方法: 安装Microsoft SQL Server Compact 4 ...