POJ 2318 TOYS (计算几何,叉积判断)
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 8661 | Accepted: 4114 |
Description
Mom and dad have a problem - their child John never puts his toys
away when he is finished playing with them. They gave John a rectangular
box to put his toys in, but John is rebellious and obeys his parents by
simply throwing his toys into the box. All the toys get mixed up, and
it is impossible for John to find his favorite toys.
John's parents came up with the following idea. They put cardboard
partitions into the box. Even if John keeps throwing his toys into the
box, at least toys that get thrown into different bins stay separated.
The following diagram shows a top view of an example toy box.
For this problem, you are asked to determine how many toys fall into each partition as John throws them into the toy box.
Input
input file contains one or more problems. The first line of a problem
consists of six integers, n m x1 y1 x2 y2. The number of cardboard
partitions is n (0 < n <= 5000) and the number of toys is m (0
< m <= 5000). The coordinates of the upper-left corner and the
lower-right corner of the box are (x1,y1) and (x2,y2), respectively. The
following n lines contain two integers per line, Ui Li, indicating that
the ends of the i-th cardboard partition is at the coordinates (Ui,y1)
and (Li,y2). You may assume that the cardboard partitions do not
intersect each other and that they are specified in sorted order from
left to right. The next m lines contain two integers per line, Xj Yj
specifying where the j-th toy has landed in the box. The order of the
toy locations is random. You may assume that no toy will land exactly on
a cardboard partition or outside the boundary of the box. The input is
terminated by a line consisting of a single 0.
Output
output for each problem will be one line for each separate bin in the
toy box. For each bin, print its bin number, followed by a colon and one
space, followed by the number of toys thrown into that bin. Bins are
numbered from 0 (the leftmost bin) to n (the rightmost bin). Separate
the output of different problems by a single blank line.
Sample Input
5 6 0 10 60 0
3 1
4 3
6 8
10 10
15 30
1 5
2 1
2 8
5 5
40 10
7 9
4 10 0 10 100 0
20 20
40 40
60 60
80 80
5 10
15 10
25 10
35 10
45 10
55 10
65 10
75 10
85 10
95 10
0
Sample Output
0: 2
1: 1
2: 1
3: 1
4: 0
5: 1 0: 2
1: 2
2: 2
3: 2
4: 2
Hint
Source
/************************************************************
* Author : kuangbin
* Email : kuangbin2009@126.com
* Last modified : 2013-07-13 17:15
* Filename : POJ2318TOYS.cpp
* Description :
* *********************************************************/ #include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
#include <map>
#include <vector>
#include <set>
#include <string>
#include <math.h> using namespace std;
struct Point
{
int x,y;
Point(){}
Point(int _x,int _y)
{
x = _x;y = _y;
}
Point operator -(const Point &b)const
{
return Point(x - b.x,y - b.y);
}
int operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
int operator ^(const Point &b)const
{
return x*b.y - y*b.x;
}
};
struct Line
{
Point s,e;
Line(){}
Line(Point _s,Point _e)
{
s = _s;e = _e;
}
}; int xmult(Point p0,Point p1,Point p2) //计算p0p1 X p0p2
{
return (p1-p0)^(p2-p0);
}
const int MAXN = ;
Line line[MAXN];
int ans[MAXN];
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n,m,x1,y1,x2,y2;
bool first = true;
while(scanf("%d",&n) == && n)
{
if(first)first = false;
else printf("\n");
scanf("%d%d%d%d%d",&m,&x1,&y1,&x2,&y2);
int Ui,Li;
for(int i = ;i < n;i++)
{
scanf("%d%d",&Ui,&Li);
line[i] = Line(Point(Ui,y1),Point(Li,y2));
}
line[n] = Line(Point(x2,y1),Point(x2,y2));
int x,y;
Point p;
memset(ans,,sizeof(ans));
while( m-- )
{
scanf("%d%d",&x,&y);
p = Point(x,y);
int l = ,r = n;
int tmp;
while( l <= r)
{
int mid = (l + r)/;
if(xmult(p,line[mid].s,line[mid].e) < )
{
tmp = mid;
r = mid - ;
}
else l = mid + ;
}
ans[tmp]++;
}
for(int i = ; i <= n;i++)
printf("%d: %d\n",i,ans[i]);
}
return ;
}
POJ 2318 TOYS (计算几何,叉积判断)的更多相关文章
- POJ 2318 TOYS 利用叉积判断点在线段的那一侧
题意:给定n(<=5000)条线段,把一个矩阵分成了n+1分了,有m个玩具,放在为位置是(x,y).现在要问第几个位置上有多少个玩具. 思路:叉积,线段p1p2,记玩具为p0,那么如果(p1p2 ...
- POJ 2318 TOYS(叉积+二分)
题目传送门:POJ 2318 TOYS Description Calculate the number of toys that land in each bin of a partitioned ...
- poj 2318 TOYS (二分+叉积)
http://poj.org/problem?id=2318 TOYS Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 101 ...
- POJ 2318 TOYS【叉积+二分】
今天开始学习计算几何,百度了两篇文章,与君共勉! 计算几何入门题推荐 计算几何基础知识 题意:有一个盒子,被n块木板分成n+1个区域,每个木板从左到右出现,并且不交叉. 有m个玩具(可以看成点)放在这 ...
- POJ 2318 TOYS (叉乘判断)
<题目链接> 题目大意: 给出矩形4个点和n个挡板俩顶点的位置,这n个挡板将该矩形分成 n+1块区域,再给你m个点的坐标,然你输出每个区域内有几个点. 解题思路: 用叉乘即可简单判断点与直 ...
- poj 2318 TOYS(计算几何 点与线段的关系)
TOYS Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 12015 Accepted: 5792 Description ...
- POJ 2318 TOYS(计算几何)
跨产品的利用率推断点线段向左或向右,然后你可以2分钟 代码: #include <cstdio> #include <cstring> #include <algorit ...
- TOYS - POJ 2318(计算几何,叉积判断)
题目大意:给你一个矩形的左上角和右下角的坐标,然后这个矩形有 N 个隔板分割成 N+1 个区域,下面有 M 组坐标,求出来每个区域包含的坐标数. 分析:做的第一道计算几何题目....使用叉积判断方 ...
- 向量的叉积 POJ 2318 TOYS & POJ 2398 Toy Storage
POJ 2318: 题目大意:给定一个盒子的左上角和右下角坐标,然后给n条线,可以将盒子分成n+1个部分,再给m个点,问每个区域内有多少各点 这个题用到关键的一步就是向量的叉积,假设一个点m在 由ab ...
- POJ 2318 TOYS (叉积+二分)
题目: Description Calculate the number of toys that land in each bin of a partitioned toy box. Mom and ...
随机推荐
- List排序的两种简便方式
using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace List ...
- watch 命令实时命令执行监控
watch 命令 watch -d -n 1 'df; ls -FlAt /path' 在使用这条命令时你需要替换其中的 /path 部分,watch 是实时监控工具,-d 参数会高亮 显示变化的 ...
- dede 去power by dedecms
include/dedesql.class.php 下的$arrs1和$arrs2的全注释掉
- php排序测试
对 http://www.cnblogs.com/kudosharry/articles/2521621.html 这个补充的调用系统sort()函数的测试结果 1000个随机数: 直接插入排序:时间 ...
- XE7 - Image的双击事件无响应,咋整?(已解决)
今天折腾了好一会,本想做个类似于手机相册的功能,显示SQLite数据库中的图片,然后继续做一些处理.哪成想,写个测试例子时就被卡住了:简单的往窗体上拖放了一个TImage和一个TLabel,没有修改任 ...
- 【英语】Bingo口语笔记(51) - 相信怀疑的表达
- 增加eclipse启动的Tomcat内存的
JAVA程序启动时JVM都会分配一个初始内存和最大内存给这个应用程序.这个初始内存和最大内存在一定程度都会影响程序的性能. 如何设置Tomcat的JVM内存大小 Tomcat本身不能直接在计算机上运行 ...
- JVM——垃圾收集算法
1.标记-清除算法 最基础的收集算法,如其名,算法为“标记”和“清除”两个阶段:首先标记出所有需要回收的对象,在标记完成后统一回收所有被标记的对象. 两个不足: 1)效率问题,标记和清除两个过程的效率 ...
- Android View绘制13问13答
1.View的绘制流程分几步,从哪开始?哪个过程结束以后能看到view? 答:从ViewRoot的performTraversals开始,经过measure,layout,draw 三个流程.draw ...
- 基于CentOS与VmwareStation10搭建Oracle11G RAC 64集群环境:2.搭建环境-2.5. 配置网络
2.5. 配置网络 2.5.1. 配置网络 Oracle Rac数据库涉及到公用网络和私有网络,因此要做网络划分和IP地址规划,下表列出了要安装的RAC数据库对应的IP地址.主机名以及网络连接类型: ...