(六)6.5 Neurons Networks Implements of Sparse Autoencoder
一大波matlab代码正在靠近.- -!
sparse autoencoder的一个实例练习,这个例子所要实现的内容大概如下:从给定的很多张自然图片中截取出大小为8*8的小patches图片共10000张,现在需要用sparse autoencoder的方法训练出一个隐含层网络所学习到的特征。该网络共有3层,输入层是64个节点,隐含层是25个节点,输出层当然也是64个节点了。
main函数, 分五步走,每个函数的实现细节在下边都列出了。
- %%======================================================================
- %% STEP 0: Here we provide the relevant parameters values that will
- % allow your sparse autoencoder to get good filters; you do not need to
- % change the parameters below.
- visibleSize = 8*8; % number of input units
- hiddenSize = 25; % number of hidden units
- sparsityParam = 0.01; % desired average activation of the hidden units.
- % (This was denoted by the Greek alphabet rho,
- % which looks like a lower-case "p",
- % in the lecture notes).
- lambda = 0.0001; % weight decay parameter
- beta = 3; % weight of sparsity penalty term
- %%======================================================================
- %% STEP 1: Implement sampleIMAGES
- %
- % After implementing sampleIMAGES, the display_network command should
- % display a random sample of 200 patches from the dataset
- patches = sampleIMAGES;
- display_network(patches(:,randi(size(patches,2),200,1)),8);
- % Obtain random parameters theta
- theta = initializeParameters(hiddenSize, visibleSize);
- %%======================================================================
- %% STEP 2: Implement sparseAutoencoderCost
- %
- % You can implement all of the components (squared error cost, weight decay term,
- % sparsity penalty) in the cost function at once, but it may be easier to do
- % it step-by-step and run gradient checking (see STEP 3) after each step. We
- % suggest implementing the sparseAutoencoderCost function using the following steps:
- %
- % (a) Implement forward propagation in your neural network, and implement the
- % squared error term of the cost function. Implement backpropagation to
- % compute the derivatives. Then (using lambda=beta=0), run Gradient Checking
- % to verify that the calculations corresponding to the squared error cost
- % term are correct.
- %
- % (b) Add in the weight decay term (in both the cost function and the derivative
- % calculations), then re-run Gradient Checking to verify correctness.
- %
- % (c) Add in the sparsity penalty term, then re-run Gradient Checking to
- % verify correctness.
- %
- % Feel free to change the training settings when debugging your
- % code. (For example, reducing the training set size or
- % number of hidden units may make your code run faster; and setting beta
- % and/or lambda to zero may be helpful for debugging.) However, in your
- % final submission of the visualized weights, please use parameters we
- % gave in Step 0 above.
- [cost, grad] = sparseAutoencoderCost(theta, visibleSize, hiddenSize, ...
- lambda,sparsityParam, beta, patches);
- %%======================================================================
- %% STEP 3: Gradient Checking
- %
- % Hint: If you are debugging your code, performing gradient checking on smaller models
- % and smaller training sets (e.g., using only 10 training examples and 1-2 hidden
- % units) may speed things up.
- % First, lets make sure your numerical gradient computation is correct for a
- % simple function. After you have implemented computeNumericalGradient.m,
- % run the following:
- checkNumericalGradient();
- % Now we can use it to check your cost function and derivative calculations
- % for the sparse autoencoder.
- numgrad = computeNumericalGradient( @(x) sparseAutoencoderCost(x, visibleSize, ...
- hiddenSize, lambda,sparsityParam, beta, patches), theta);
- % Use this to visually compare the gradients side by side
- disp([numgrad grad]);
- % Compare numerically computed gradients with the ones obtained from backpropagation
- diff = norm(numgrad-grad)/norm(numgrad+grad);
- disp(diff); % Should be small. In our implementation, these values are
- % usually less than 1e-9.
- % When you got this working, Congratulations!!!
- %%======================================================================
- %% STEP 4: After verifying that your implementation of
- % sparseAutoencoderCost is correct, You can start training your sparse
- % autoencoder with minFunc (L-BFGS).
- % Randomly initialize the parameters
- theta = initializeParameters(hiddenSize, visibleSize);
- % Use minFunc to minimize the function
- addpath minFunc/
- options.Method = 'lbfgs'; % Here, we use L-BFGS to optimize our cost
- % function. Generally, for minFunc to work, you
- % need a function pointer with two outputs: the
- % function value and the gradient. In our problem,
- % sparseAutoencoderCost.m satisfies this.
- options.maxIter = 400; % Maximum number of iterations of L-BFGS to run
- options.display = 'on';
- [opttheta, cost] = minFunc( @(p) sparseAutoencoderCost(p,visibleSize, hiddenSize, ...
- lambda, sparsityParam, beta, patches),theta, options);
- %%======================================================================
- %% STEP 5: Visualization
- W1 = reshape(opttheta(1:hiddenSize*visibleSize), hiddenSize, visibleSize);
- display_network(W1', 12);
- print -djpeg weights.jpg % save the visualization to a file
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 对应step1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- %三个函数(sampleIMAGES)(normalizeData)(initializeParameters)%%%%
- function patches = sampleIMAGES()
- load IMAGES; % 加载初始的10张512*512大图片
- patchsize = 8; % 采样大小
- numpatches = 10000;
- % 初始化该矩阵为0,该矩阵为 64*10000维每一列为一张图片.
- patches = zeros(patchsize*patchsize, numpatches);
- % IMAGES 为一个包含10 张images的三维数组,IMAGES(:,:,6) 是一个第六张图片的 512x512 的二维数组,
- % 命令 "imagesc(IMAGES(:,:,6)), colormap gray;" 可以把第六张图可视化.
- % 这几张图是经过whiteing预处理的?
- % IMAGES(21:30,21:30,1) 就是从第一张图采样得到的(21,21) to (30,30) 的小patchs
- %在每张图片中随机选取1000个patch,共10000个patch
- for imageNum = 1:10
- [rowNum colNum] = size(IMAGES(:,:,imageNum));
- %实现每张图片选取1000个patch
- for patchNum = 1:1000
- %得到左上角的两个点
- xPos = randi([1,rowNum-patchsize+1]);
- yPos = randi([1, colNum-patchsize+1]);
- %填充到矩阵里
- patches(:,(imageNum-1)*1000+patchNum) = ...
- reshape(IMAGES(xPos:xPos+7,yPos:yPos+7,imageNum),64,1);
- end
- end
- %由于autoencoder的激励函数是sigmod函数,输出值限定在[0,1],故为了达到H W,b(x)= x,x作为输入,
- %也要限定在0-1之间,故需要进行正则化
- patches = normalizeData(patches);
- end
- % 正则化的函数,不太明白s-sigma法则?
- function patches = normalizeData(patches)
- % 减去均值
- patches = bsxfun(@minus, patches, mean(patches));
- % s = std(X),此处X是一个矢量,该函数返回标准偏差(注意其分母为n-1,而不是n) 。
- % 结果s是一个X各样本偏差无偏估计的平方根(X包含独立的、同分布样本)。
- % 如果X是一个矩阵,该函数返回一个行矢量,它包含了X每列元素的标准偏差。
- pstd = 3 * std(patches(:));
- patches = max(min(patches, pstd), -pstd) / pstd;
- % 重新压缩 从[-1,1] 到 [0.1,0.9]
- patches = (patches + 1) * 0.4 + 0.1;
- end
- %首先初始化参数
- function theta = initializeParameters(hiddenSize, visibleSize)
- % Initialize parameters randomly based on layer sizes.
- % we'll choose weights uniformly from the interval [-r, r]
- r = sqrt(6) / sqrt(hiddenSize+visibleSize+1);
- %rand(a,b)产生均匀分布的随机矩阵维度为a*b,元素取值范围0.0 ~1.0。
- W1 = rand(hiddenSize, visibleSize) * 2 * r - r;
- %rand(a,b)*2*r即取值范围为(0-2r), rand(a,b)*2*r -r即取值范围为(-r - r)
- W2 = rand(visibleSize, hiddenSize) * 2 * r - r;
- b1 = zeros(hiddenSize, 1); %连接到hidden unit的偏置单元
- b2 = zeros(visibleSize, 1); %链接到output layer的偏置单元
- % 将矩阵合并为一个向量
- theta = [W1(:) ; W2(:) ; b1(:) ; b2(:)];
- %初始化参数结束
- end
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 对应step 2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
- %%%%%返回稀疏损失函数的值与梯度值%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- function [cost,grad] = sparseAutoencoderCost(theta, visibleSize, hiddenSize, ...
- lambda, sparsityParam, beta, data)
- % visibleSize: 输入层单元数
- % hiddenSize: 隐藏单元数
- % lambda: 正则项
- % sparsityParam: (p)指定的平均激活度p
- % beta: 稀疏权重项B
- % data: 64x10000 的矩阵为training data,data(:,i) 是第i个训练样例.
- % 把参数拼接为一个向量,因为采用L-BFGS优化,L-BFGS要求的就是向量.
- % 将长向量转换成每一层的权值矩阵和偏置向量值
- % theta向量的的 1->hiddenSize*visibleSize,W1共hiddenSize*visibleSize 个元素,重新作为矩阵
- W1 = reshape(theta(1:hiddenSize*visibleSize), hiddenSize, visibleSize);
- %类似以上一直往后放
- W2 = reshape(theta(hiddenSize*visibleSize+1:2*hiddenSize*visibleSize), visibleSize, hiddenSize);
- b1 = theta(2*hiddenSize*visibleSize+1:2*hiddenSize*visibleSize+hiddenSize);
- b2 = theta(2*hiddenSize*visibleSize+hiddenSize+1:end);
- % 参数对应的梯度矩阵 ;
- cost = 0;
- W1grad = zeros(size(W1));
- W2grad = zeros(size(W2));
- b1grad = zeros(size(b1));
- b2grad = zeros(size(b2));
- Jcost = 0; %直接误差
- Jweight = 0;%权值惩罚
- Jsparse = 0;%稀疏性惩罚
- [n m] = size(data); %m为样本的个数,n为样本的特征数
- %前向算法计算各神经网络节点的线性组合值和active值
- %W1为 hiddenSize*visibleSize的矩阵
- %data为 visibleSize* trainexampleNum的矩阵
- %remat(b1,1,m)把向量b1复制扩展为hiddenSize*m列
- % 根据公式 Z^(l) = z^(l-1)*W^(l-1)+b^(l-1)
- %z2保存的是10000个样本下隐藏层的输入,为hiddenSize*m维的矩阵,每一列代表一次输入
- z2= W1*data + remat(b1,1,m);%第二层的输入
- a2 = sigmoid(z2); %对z2取sigmod 即得到a2,即隐藏层的输出
- z3 = W2*a2+repmat(b2,1,m); %output layer 的输入
- a3 = sigmoid(z3); %output 层的输出
- % 计算预测产生的误差
- %对应J(W,b), 外边的sum是对所有样本求和,里边的sum是对输出层的所有分量求和
- Jcost = (0.5/m)*sum(sum((a3-data).^2));
- %计算权值惩罚项 正则化项,并没有带正则项参数
- Jweight = (1/2)*(sum(sum(W1.^2))+sum(sum(W2.^2)));
- %计算稀疏性规则项 sum(matrix,2)是进行按行求和运算,即所有样本在隐层的输出累加求均值
- % rho为一个hiddenSize*1 维的向量
- rho = (1/m).*sum(a2,2);%求出隐含层输出aj的平均值向量 rho为hiddenSize维的
- %求稀疏项的损失
- Jsparse = sum(sparsityParam.*log(sparsityParam./rho)+(1-sparsityParam).*log((1-sparsityParam)./(1-rho)));
- %损失函数的总表达式 损失项 + 正则化项 + 稀疏项
- cost = Jcost + lambda*Jweight + beta*Jsparse;
- %计算l = 3 即 output-layer层的误差dleta3,因为在autoencoder中输入等于输出h(W,b)=x
- delta3 = -(data-a3).*sigmoidInv(z3);
- %因为加入了稀疏规则项,所以计算偏导时需要引入该项,sterm为稀疏项,为hiddenSize维的向量
- sterm = beta*(-sparsityParam./rho+(1-sparsityParam)./(1-rho))
- % W2 为64*25的矩阵,d3为第三层的输出为64*10000的矩阵,每一列为每个样本x^(i)的输出,W2'为W2的转置
- % repmat(sterm,1,m)会把函数复制扩展为m列的矩阵,每一列都为sterm向量。
- % d2为hiddenSize*10000的矩阵
- delta2 = (W2'*delta3+repmat(sterm,1,m)).*sigmoidInv(z2);
- %计算W1grad
- % data'为10000*64的矩阵 d2*data' 位25*64的矩阵
- W1grad = W1grad+delta2*data';
- W1grad = (1/m)*W1grad+lambda*W1;
- %计算W2grad
- W2grad = W2grad+delta3*a2';
- W2grad = (1/m).*W2grad+lambda*W2;
- %计算b1grad
- b1grad = b1grad+sum(delta2,2);
- b1grad = (1/m)*b1grad;%注意b的偏导是一个向量,所以这里应该把每一行的值累加起来
- %计算b2grad
- b2grad = b2grad+sum(delta3,2);
- b2grad = (1/m)*b2grad;
- %计算完成重新转为向量
- grad = [W1grad(:) ; W2grad(:) ; b1grad(:) ; b2grad(:)];
- end
- %-------------------------------------------------------------------
- % Here's an implementation of the sigmoid function, which you may find useful
- % in your computation of the costs and the gradients. This inputs a (row or
- % column) vector (say (z1, z2, z3)) and returns (f(z1), f(z2), f(z3)).
- function sigm = sigmoid(x)
- sigm = 1 ./ (1 + exp(-x));
- end
- %sigmoid函数的导函数
- function sigmInv = sigmoidInv(x)
- sigmInv = sigmoid(x).*(1-sigmoid(x));
- end
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 对应step 3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
- %三个函数:(checkNumericalGradient)(simpleQuadraticFunction)(computeNumericalGradient)
- function [] = checkNumericalGradient()
- x = [4; 10];
- %当前简单函数实际的值与实际的导函数
- [value, grad] = simpleQuadraticFunction(x);
- % 在点 x 处计算简单函数的梯度,("@simpleQuadraticFunction" denotes a pointer to a function.)
- numgrad = computeNumericalGradient(@simpleQuadraticFunction, x);
- % disp()等价于 print()
- disp([numgrad grad]);
- fprintf('The above two columns you get should be very similar.\n(Left-Your Numerical Gradient, Right-Analytical Gradient)\n\n');
- % norm 等价于 sqrt(sum(X.^2)); 如果实现正确,设置 EPSILON = 0.0001,误差应该为2.1452e-12
- diff = norm(numgrad-grad)/norm(numgrad+grad);
- disp(diff);
- fprintf('Norm of the difference between numerical and analytical gradient (should be < 1e-9)\n\n');
- end
- %这个简单函数用来检验写的computeNumericalGradient函数的正确性
- function [value,grad] = simpleQuadraticFunction(x)
- % this function accepts a 2D vector as input.
- % Its outputs are:
- % value: h(x1, x2) = x1^2 + 3*x1*x2
- % grad: A 2x1 vector that gives the partial derivatives of h with respect to x1 and x2
- % Note that when we pass @simpleQuadraticFunction(x) to computeNumericalGradients, we're assuming
- % that computeNumericalGradients will use only the first returned value of this function.
- value = x(1)^2 + 3*x(1)*x(2);
- grad = zeros(2, 1);
- grad(1) = 2*x(1) + 3*x(2);
- grad(2) = 3*x(1);
- end
- %梯度检验的函数
- function numgrad = computeNumericalGradient(J, theta)
- % theta: 参数,向量或者实数均可
- % J: 输出值为实数的函数. 调用y = J(theta)将会返回函数在theta处的值
- % numgrad初始化为0,与theta维度相同
- numgrad = zeros(size(theta));
- EPSILON = 1e-4;
- % theta是一个行向量,size(theta,1)是求行数
- n = size(theta,1);
- %产生一个维度为n的单位矩阵
- E = eye(n);
- for i = 1:n
- % (n,:)代表第n行,所有的列
- % (:,n)代表所有行,第n列
- % 由于E是单位矩阵,所以只有第i行第i列的元素变为EPSILON
- delta = E(:,i)*EPSILON;
- %向量第i维度的值
- numgrad(i) = (J(theta+delta)-J(theta-delta))/(EPSILON*2.0);
- end
- %% ---------------------------------------------------------------
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 对应step 5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%关于函数的展示%%%%%%%%%%%%%%%%%%%%%%%%%%%
- function [h, array] = display_network(A, opt_normalize, opt_graycolor, cols, opt_colmajor)
- % This function visualizes filters in matrix A. Each column of A is a
- % filter. We will reshape each column into a square image and visualizes
- % on each cell of the visualization panel.
- % All other parameters are optional, usually you do not need to worry
- % about it.
- % opt_normalize: whether we need to normalize the filter so that all of
- % them can have similar contrast. Default value is true.
- % opt_graycolor: whether we use gray as the heat map. Default is true.
- % cols: how many columns are there in the display. Default value is the
- % squareroot of the number of columns in A.
- % opt_colmajor: you can switch convention to row major for A. In that
- % case, each row of A is a filter. Default value is false.
- warning off all
- if ~exist('opt_normalize', 'var') || isempty(opt_normalize)
- opt_normalize= true;
- end
- if ~exist('opt_graycolor', 'var') || isempty(opt_graycolor)
- opt_graycolor= true;
- end
- if ~exist('opt_colmajor', 'var') || isempty(opt_colmajor)
- opt_colmajor = false;
- end
- % rescale
- A = A - mean(A(:));
- if opt_graycolor, colormap(gray); end
- % compute rows, cols
- [L M]=size(A);
- sz=sqrt(L);
- buf=1;
- if ~exist('cols', 'var')
- if floor(sqrt(M))^2 ~= M
- n=ceil(sqrt(M));
- while mod(M, n)~=0 && n<1.2*sqrt(M), n=n+1; end
- m=ceil(M/n);
- else
- n=sqrt(M);
- m=n;
- end
- else
- n = cols;
- m = ceil(M/n);
- end
- array=-ones(buf+m*(sz+buf),buf+n*(sz+buf));
- if ~opt_graycolor
- array = 0.1.* array;
- end
- if ~opt_colmajor
- k=1;
- for i=1:m
- for j=1:n
- if k>M,
- continue;
- end
- clim=max(abs(A(:,k)));
- if opt_normalize
- array(buf+(i-1)*(sz+buf)+(1:sz),buf+(j-1)*(sz+buf)+(1:sz))=reshape(A(:,k),sz,sz)/clim;
- else
- array(buf+(i-1)*(sz+buf)+(1:sz),buf+(j-1)*(sz+buf)+(1:sz))=reshape(A(:,k),sz,sz)/max(abs(A(:)));
- end
- k=k+1;
- end
- end
- else
- k=1;
- for j=1:n
- for i=1:m
- if k>M,
- continue;
- end
- clim=max(abs(A(:,k)));
- if opt_normalize
- array(buf+(i-1)*(sz+buf)+(1:sz),buf+(j-1)*(sz+buf)+(1:sz))=reshape(A(:,k),sz,sz)/clim;
- else
- array(buf+(i-1)*(sz+buf)+(1:sz),buf+(j-1)*(sz+buf)+(1:sz))=reshape(A(:,k),sz,sz);
- end
- k=k+1;
- end
- end
- end
- if opt_graycolor
- h=imagesc(array,'EraseMode','none',[-1 1]);
- else
- h=imagesc(array,'EraseMode','none',[-1 1]);
- end
- axis image off
- drawnow;
- warning on all
(六)6.5 Neurons Networks Implements of Sparse Autoencoder的更多相关文章
- CS229 6.5 Neurons Networks Implements of Sparse Autoencoder
sparse autoencoder的一个实例练习,这个例子所要实现的内容大概如下:从给定的很多张自然图片中截取出大小为8*8的小patches图片共10000张,现在需要用sparse autoen ...
- (六)6.13 Neurons Networks Implements of stack autoencoder
对于加深网络层数带来的问题,(gradient diffuse 局部最优等)可以使用逐层预训练(pre-training)的方法来避免 Stack-Autoencoder是一种逐层贪婪(Greedy ...
- CS229 6.13 Neurons Networks Implements of stack autoencoder
对于加深网络层数带来的问题,(gradient diffuse 局部最优等)可以使用逐层预训练(pre-training)的方法来避免 Stack-Autoencoder是一种逐层贪婪(Greedy ...
- (六)6.10 Neurons Networks implements of softmax regression
softmax可以看做只有输入和输出的Neurons Networks,如下图: 其参数数量为k*(n+1) ,但在本实现中没有加入截距项,所以参数为k*n的矩阵. 对损失函数J(θ)的形式有: 算法 ...
- (六)6.11 Neurons Networks implements of self-taught learning
在machine learning领域,更多的数据往往强于更优秀的算法,然而现实中的情况是一般人无法获取大量的已标注数据,这时候可以通过无监督方法获取大量的未标注数据,自学习( self-taught ...
- CS229 6.10 Neurons Networks implements of softmax regression
softmax可以看做只有输入和输出的Neurons Networks,如下图: 其参数数量为k*(n+1) ,但在本实现中没有加入截距项,所以参数为k*n的矩阵. 对损失函数J(θ)的形式有: 算法 ...
- (六) 6.1 Neurons Networks Representation
面对复杂的非线性可分的样本是,使用浅层分类器如Logistic等需要对样本进行复杂的映射,使得样本在映射后的空间是线性可分的,但在原始空间,分类边界可能是复杂的曲线.比如下图的样本只是在2维情形下的示 ...
- CS229 6.11 Neurons Networks implements of self-taught learning
在machine learning领域,更多的数据往往强于更优秀的算法,然而现实中的情况是一般人无法获取大量的已标注数据,这时候可以通过无监督方法获取大量的未标注数据,自学习( self-taught ...
- (六)6.8 Neurons Networks implements of PCA ZCA and whitening
PCA 给定一组二维数据,每列十一组样本,共45个样本点 -6.7644914e-01 -6.3089308e-01 -4.8915202e-01 ... -4.4722050e-01 -7.4 ...
随机推荐
- ExtJs之单选及多选框
坚持 <!DOCTYPE html> <html> <head> <title>ExtJs</title> <meta http-eq ...
- CS程序,服务器端弹出MessageBox.Show()之类的UI操作???禁止
服务器端绝对不能用MessageBox.Show之类的UI操作,大家要掌握异常(Exception)的工作机制. 可能你开发调试时貌似可以,因为是以单机版运行.在服务层或者数据访问层MessageBo ...
- linux下如何查看主机的外网ip地址
在linux下如果我们使用的是nat方式上网.通过ifconfig命令查看到的ip地址往往是内网地址 那么如何查看主机在互联网上使用的公网IP呢?我们可以在命令行下使用curl命令实现这个功能. [r ...
- Android NDK引用预编译的动态链接库
NDK里有个例子: android-ndk-r10/samples/module-exports/jni一看就懂了 ———————————————————————————– 从r5版本开始,就支持预编 ...
- C/C++ 位域知识小结
C/C++ 位域知识小结 几篇较全面的位域相关的文章: http://www.uplook.cn/blog/9/93362/ C/C++位域(Bit-fields)之我见 C中的位域与大小端问题 内存 ...
- Linux软链接和硬链接
Linux中的链接有两种方式,软链接和硬链接.本文试图清晰彻底的解释Linux中软链接和硬链接文件的区别. 1.Linux链接文件 1)软链接文件 软链接又叫符号链接,这个文件包含了另一个文件的路径 ...
- AngularJs+bootstrap搭载前台框架——准备工作
1.关于什么是AngularJs以及什么是bootstrap我就不多说了,简单说下,AngularJs是一个比较强大前台MVC框架,bootstrap是Twitter推出的一个用于前端开发的开源工具包 ...
- PowerDesigner如何自定义报表模板
PowerDesigner如何自定义报表模板 帅宏军 使用PowerDesigner设计数据库非常方便,但是它自带的报表模板一般不符合中国的使用情况.如何设计一个自己的报表模板,并在做项目的数据库设计 ...
- 网页爬虫的设计与实现(Java版)
网页爬虫的设计与实现(Java版) 最近为了练手而且对网页爬虫也挺感兴趣,决定自己写一个网页爬虫程序. 首先看看爬虫都应该有哪些功能. 内容来自(http://www.ibm.com/deve ...
- MTK
1.mt_boot_init->boot_linux_from_storage->boot_linux->boot_linux_fdt