BZOJ 1415 聪聪和可可
f[i][j]表示i点追j点的期望步数。。。
这题必须spfa不能bfs。
且复杂度不会炸(仅1000条边)
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#define maxv 1050
#define maxe 2050
#define inf 1000000007
#define eps 1e-6
using namespace std;
int n,m,b,t,x,y,g[maxv],nume=;
int d[maxv],p[maxv][maxv],dis[maxv];
double f[maxv][maxv];
bool vis[maxv];
queue <int> q;
struct edge
{
int v,nxt;
}e[maxe];
void addedge(int u,int v)
{
e[++nume].v=v;
e[nume].nxt=g[u];
g[u]=nume;
}
void reset()
{
for (int i=;i<=n;i++)
for (int j=;j<=n;j++)
p[i][j]=inf;
}
void pre_bfs(int x)
{
while (!q.empty()) q.pop();
for (int i=;i<=n;i++)
{
vis[i]=false;
dis[i]=inf;
}
dis[x]=;
for (int i=g[x];i;i=e[i].nxt)
{
int v=e[i].v;
vis[v]=true;dis[v]=;q.push(v);
p[x][v]=v;
}
while (!q.empty())
{
int head=q.front();q.pop();
for (int i=g[head];i;i=e[i].nxt)
{
int v=e[i].v;
if ((dis[v]>dis[head]+) || ((dis[v]==dis[head]+) && (p[x][v]>p[x][head])))
{
dis[v]=dis[head]+;
p[x][v]=p[x][head];
if (!vis[v]) q.push(v);
}
}
vis[head]=false;
}
return;
}
double dp(int x,int y)
{
if (x==y) return ;
if (f[x][y]>eps) return f[x][y];
if ((p[x][y]==y) || (p[p[x][y]][y]==y)) return ;
double ret=;
for (int i=g[y];i;i=e[i].nxt)
{
int v=e[i].v;
if (p[p[x][y]][y]==y) ret++;
else if (p[x][y]==y) ret++;
else ret+=dp(p[p[x][y]][y],v);
}
if (p[p[x][y]][y]==y) ret++;
else if (p[x][y]==y) ret++;
else ret+=dp(p[p[x][y]][y],y);
ret/=(d[y]+);ret=ret+;
f[x][y]=ret;
return ret;
}
int main()
{
memset(d,,sizeof(d));
scanf("%d%d",&n,&m);scanf("%d%d",&b,&t);
for (int i=;i<=m;i++)
{
scanf("%d%d",&x,&y);
addedge(x,y);addedge(y,x);
d[x]++;d[y]++;
}
reset();
for (int i=;i<=n;i++)
pre_bfs(i);
for (int i=;i<=n;i++) p[i][i]=inf;
printf("%.3lf\n",dp(b,t));
return ;
}
BZOJ 1415 聪聪和可可的更多相关文章
- BZOJ 1415: [Noi2005]聪聪和可可( 最短路 + 期望dp )
用最短路暴力搞出s(i, j)表示聪聪在i, 可可在j处时聪聪会走的路线. 然后就可以dp了, dp(i, j) = [ dp(s(s(i,j), j), j) + Σdp(s(s(i,j), j), ...
- bzoj 1415 [Noi2005]聪聪和可可——其实无环的图上概率
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1415 乍一看和“游走”一样.于是高斯消元.n^2状态,复杂度n^6…… 看看TJ,发现因为聪 ...
- BZOJ 1415 [NOI2005]聪聪与可可 (概率DP+dfs)
题目大意:给你一个无向联通图,节点数n<=1000.聪聪有一个机器人从C点出发向在M点的可可移动,去追赶并吃掉可可,在单位时间内,机器人会先朝离可可最近的节点移动1步,如果移动一步机器人并不能吃 ...
- BZOJ 1415: [Noi2005]聪聪和可可 [DP 概率]
传送门 题意:小兔子乖乖~~~ 题意·真:无向图吗,聪抓可,每个时间聪先走可后走,聪一次可以走两步,朝着里可最近且点编号最小的方向:可一次只一步,等概率走向相邻的点或不走 求聪抓住可的期望时间 和游走 ...
- bzoj 1415: [Noi2005]聪聪和可可 期望dp+记忆化搜索
期望dp水题~ 你发现每一次肯定是贪心走 2 步,(只走一步的话就可能出现环) 然后令 $f[i][j]$ 表示聪在 $i$,可在 $j$,且聪先手两个人碰上面的期望最小次数. 用记忆化搜索转移就行了 ...
- bzoj 1415: [Noi2005]聪聪和可可
直接上记忆化搜索 #include<queue> #include<cstdio> #include<algorithm> using namespace std; ...
- bzoj 1415: [Noi2005]聪聪和可可【期望dp+bfs】
因为边权为1所以a直接bfs瞎搞就行--我一开始竟然写了个spfa #include<iostream> #include<cstdio> #include<queue& ...
- BZOJ 1415: [Noi2005]聪聪和可可(记忆化搜索+期望)
传送门 解题思路 还是比较简答的一道题.首先\(bfs\)把每个点到其他点的最短路求出来,然后再记忆化搜索.记搜的时候猫的走法是确定的,搜一下老鼠走法就行了. 代码 #include<iostr ...
- 【BZOJ】【1415】【NOI2005】聪聪和可可
数学期望+记忆化搜索 论文:<浅析竞赛中一类数学期望问题的解决方法>——汤可因 中的第一题…… Orz 黄学长 我实在是太弱,这么简单都yy不出来…… 宽搜预处理有点spfa的感觉= = ...
- 【BZOJ 1415】 1415: [Noi2005]聪聪和可可 (bfs+记忆化搜索+期望)
1415: [Noi2005]聪聪和可可 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1640 Solved: 962 Description I ...
随机推荐
- TKStudio 4.6IDE Warning: L6310W: Unable to find ARM libraries.
我也遇到了同样的问题.搞了很久,按下面的操解决了 内容转至:http://bbs.zlgmcu.com/dv_rss.asp?s=xh&boardid=43&id=23032& ...
- vim使用指北 ---- Global Replacement
一般替换 s/old/new --- 替换当前行的第一个匹配项 s/old/new/g ---- 替换当前行所有的匹配项 number1,number2-s/old/new/g ---- 替换从 ...
- ASP.NET MVC 应用提速的十种方法
[编者按]本文作者为 DZone 社区的最具价值博主(MVB) Jonathan Danylko,主要介绍为 ASP.NET MVC 应用提速的十种方法.由国内 ITOM 管理平台 OneAPM 编译 ...
- Swift 2.0 到底「新」在哪?
[编者按]2015年6月,一年一度的苹果 WWDC 大会如期而至,在大会上苹果发布了 Swift 2.0,引入了很多新的特性,以帮助开发者更快.更简单地构建应用.本篇文章作者是 Maxime defa ...
- oc和swift的混编
参考:http://blog.sina.com.cn/s/blog_8d1bc23f0102v5tl.html swift中使用oc类的方法 1.创建一个oc.h文件 2.添加需要倒入的oc类的头文件 ...
- Services学习(一)
对于需要长期运行,例如播放音乐.长期和服务器的连接,即使已不是屏幕当前的activity仍需要运行的情况,采用服务方式.服务将通过API触发启动或者通过IPC(Interprocess Communi ...
- Eclipse下Python的MySQLdb的安装以及相关问题
前提是要安装好Python以及eclipse和MySQL的相应版本.本文Python为2.7,MySQL为5.1Eclipse为3.6.2 下载完MySQLdb以后,直接安装即可.在eclipse中启 ...
- java多线程浅谈
当一个线程进入一个对象的一个synchronized方法后,其它线程是否可进入此对象的其它方法? 分这几种情况: 1.其他方法前是否加了synchronized关键字,如果没加,则能. 2 ...
- Eclipse调试Java的十个技巧
先提三点 不要使用System.out.println()作为调试工具 启用所有组件的详细的日志记录级别 使用一个日志分析器来阅读日志 1.条件断点 想象一下我们平时如何添加断点,通常的做法是 ...
- Docker初步认识安装和简单实例
前话 问题 开发网站需要搭建服务器环境,FQ官网下载软件包,搭建配置nginx,apache,数据库等.官网没有直接可用的运行版本,担心网络流传的非官方发布软件包不安全还得自行编译官方源码安装,忘记步 ...