CSUFT 1002 Robot Navigation
1002: Robot Navigation
Time Limit: 1 Sec | Memory Limit: 128 MB | |
Submit: 4 | Solved: 2 |
Description
A robot has been sent to explore a remote planet. To specify the path the robot should take, a program is sent each day. The program consists of a sequence of the following commands:
- FORWARD: move forward by one unit.
- TURN LEFT: turn left by 90 degrees. The robot remains at the same location.
- TURN RIGHT: turn right by 90 degrees. The robot remains at the same location.
The robot also has sensor units which allows it to obtain a map of its surrounding area. The map is represented as a grid ofMrows andNcolumns. Each grid point is represented by a coordinate (r,c) wherer = 0is the north edge of the map,r = M - 1is the south edge,c = 0is the west edge, andc = N - 1is the east edge. Some grid points contain hazards (e.g. craters) and the program must avoid these points or risk losing the robot.
Naturally, if the initial location and direction of the robot and its destination position are known, we wish to send the shortest program (one consisting of the fewest commands) to move the robot to its destination (we do not care which direction it faces at the destination). You are more interested in knowing the number of different shortest programs that can move the robot to its destination, because we may need to send different sequences as interplanetary communication is not necessarily reliable. However, the number of shortest programs can be very large, so you are satisfied to compute the number as a remainder under some modulus, knowing that something you learned in classes called the Chinese remainder theorem can be used to compute the final answer.
Input
The input consists of a number of cases. The first line of each case gives three integersM,N, and the modulusm(0 < M, N <= 1000, 0 < m <= 1000000000). The nextMlines containNcharacters each and specify the map. A '.' indicates that the robot can move into that grid point, and a '*' indicates a hazard. The final line gives four integersr1,c1,r2,c2followed by a characterd. The coordinates (r1,c1) specify the initial position of the robot, and (r2,c2) specify the destination. The character d is one of 'N', 'S', 'W', 'E' indicating the initial direction of the robot. It is assumed that the initial position and the destination are not hazards.
The input is terminated whenm = 0.
Output
For each case, print its case number, the modulus, as well as the remainder of the number of different programs when divided by the modulusm. The output of each case should be on a single line, in the format demonstrated below. If there is no program that can move the robot to its destination, output -1 for the number of different programs.
Sample Input
3 3 100
***
.*.
***
1 0 1 2 E
4 4 100
****
*.*.
*.*.
*...
1 1 1 3 N
4 8 100
********
...**...
*......*
********
1 0 1 7 E
0 0 0
Sample Output
Case 1: 100 -1
Case 2: 100 2
Case 3: 100 4
HINT
Source
#include <bits/stdc++.h>
using namespace std; const char* dirs = "NESW";
const int Maxn = ;
const int INF = 0x3f3f3f3f; int R,C;
int mod; char a[Maxn][Maxn]; struct Node
{
int r,c;
int dir;
Node(int r=,int c=,int dir=):r(r),c(c),dir(dir) {}
}; const int dr[] = {-,,,};
const int dc[] = {,,,-}; Node walk(const Node& u,int turn)
{
int dir = u.dir;
if(turn==) dir = (dir - + )%; // zuo zhuan
if(turn==) dir = (dir+ )%; // you zhuan
if(turn==)
return Node(u.r+dr[dir],u.c+dc[dir],dir);
// zhi zou
return Node(u.r,u.c,dir);
} int d[Maxn][Maxn][];
int sum[Maxn][Maxn][]; int dir_id(char c)
{
return strchr(dirs,c)-dirs;
} int r1,c1,r2,c2,dir; bool inside(int r,int c)
{
if(r>=&&r<R&&c>=&&c<C)
return true;
return false;
} int cnt; int bfs()
{
queue<Node> q;
memset(d,-,sizeof(d));
Node u(r1,c1,dir);
d[u.r][u.c][u.dir] = ;
sum[u.r][u.c][u.dir] = ; q.push(u); cnt = ;
while(!q.empty())
{
Node u = q.front();
q.pop();
for(int i=; i<; i++)
{
Node v = walk(u,i);
if(a[v.r][v.c]=='.'&&inside(v.r,v.c)&&d[v.r][v.c][v.dir]<)
{
d[v.r][v.c][v.dir] = d[u.r][u.c][u.dir] + ;
sum[v.r][v.c][v.dir] = sum[u.r][u.c][u.dir];
q.push(v);
}
else if(a[v.r][v.c]=='.'&&inside(v.r,v.c))
{
if(d[v.r][v.c][v.dir]==d[u.r][u.c][u.dir]+)
{
sum[v.r][v.c][v.dir] = (sum[v.r][v.c][v.dir]+sum[u.r][u.c][u.dir])%mod;
}
}
}
} int ans = INF;
for(int i=; i<; i++)
{
if(d[r2][c2][i]!=-)
ans = min(ans,d[r2][c2][i]);
} if(ans==INF)
return -; for(int i=; i<; i++)
{
if(ans==d[r2][c2][i])
{
cnt = (cnt + sum[r2][c2][i])%mod;
}
}
return cnt; } void _bfs()
{
queue<Node> q;
memset(d,-,sizeof(d));
Node u(r1,c1,dir);
d[u.r][u.c][u.dir] = ; q.push(u); vector<int> ans;
cnt = ;
while(!q.empty())
{
Node u = q.front();
q.pop(); if(u.r==r2&&u.c==c2)
{
if(ans.size()!=)
{
if(ans[]!=d[u.r][u.c][u.dir])
return ;
else (cnt++)%mod;
}
else
{
cnt++;
ans.push_back(d[u.r][u.c][u.dir]);
} }
for(int i=; i<; i++)
{
Node v = walk(u,i);
if(a[v.r][v.c]=='.'&&inside(v.r,v.c))
{
d[v.r][v.c][v.dir] = d[u.r][u.c][u.dir] + ;
q.push(v);
}
}
}
} int main()
{ int kase = ;
while(scanf("%d%d%d",&R,&C,&mod),R)
{
memset(d,-,sizeof(d));
for(int i=; i<R; i++)
scanf("%s",a[i]); char str[];
scanf("%d%d%d%d%s",&r1,&c1,&r2,&c2,str); dir = dir_id(str[]); printf("Case %d: %d %d\n",++kase,mod,bfs());
}
return ;
} /**************************************************************
Problem: 1002
User: YinJianZuiShuai
Language: C++
Result: Accepted
Time:284 ms
Memory:34260 kb
****************************************************************/
CSUFT 1002 Robot Navigation的更多相关文章
- HDU 4166 & BNU 32715 Robot Navigation (记忆化bfs)
题意:给一个二维地图,每个点为障碍或者空地,有一个机器人有三种操作:1.向前走:2.左转90度:3.右转90度.现给定起点和终点,问到达终点最短路的条数. 思路:一般的题目只是求最短路的长度,但本题还 ...
- Robot Perception for Indoor Navigation《室内导航中的机器人感知》
Felix Endres 论文下载 Technische Fakult¨ atAlbert-Ludwigs-Universit¨ at Freiburg Betreuer: Prof. Dr. Wol ...
- Simulating a Freight robot in Gazebo
Installation Before installing the simulation environment, make sure your desktop is setup with a st ...
- Simulating a Fetch robot in Gazebo
Installation Before installing the simulation environment, make sure your desktop is setup with a st ...
- 泡泡一分钟:Topomap: Topological Mapping and Navigation Based on Visual SLAM Maps
Topomap: Topological Mapping and Navigation Based on Visual SLAM Maps Fabian Bl¨ochliger, Marius Feh ...
- SLAM学习笔记(3)相关概念
SIFT,即尺度不变特征变换(Scale-invariant feature transform,SIFT),是用于图像处理领域的一种描述子.这种描述具有尺度不变性,可在图像中检测出关键点,是一种局部 ...
- 2015 UESTC Winter Training #8【The 2011 Rocky Mountain Regional Contest】
2015 UESTC Winter Training #8 The 2011 Rocky Mountain Regional Contest Regionals 2011 >> North ...
- Robotics Tools
https://sites.google.com/site/sunglok/rv_tool/robot Robotics Tools Contents 1 Robotics Tutorials 2 R ...
- semantic segmentation 和instance segmentation
作者:周博磊链接:https://www.zhihu.com/question/51704852/answer/127120264来源:知乎著作权归作者所有,转载请联系作者获得授权. 图1. 这张图清 ...
随机推荐
- IOS Suppot Font 苹果默认支持的字体一览2(普通,加粗,倾斜)
- eclipse 改变字体大小
- ECharts切换主题
初始化接口,返回ECharts实例,其中dom为图表所在节点,theme为可选的主题,内置主题('macarons', 'infographic')直接传入名称,自定义扩展主题可传入主题对象.如: v ...
- spark join broadcast优化
在大量数据中对一些字段进行关联. 举例 ipTable:需要进行关联的几千条ip数据(70k) hist:历史数据(百亿级别) 直接join将会对所有数据进行shuffle,需要大量的io操作,相同的 ...
- 大数据量的csv文件如何导入到 sql 数据库
BULK INSERT dbo.T_test001 FROM 'E:\bus_20160316\bus全量评级及借款编号_20160316.csv' WITH ( FIELDTERMINATOR =' ...
- Oracle数据类型总结
一 字符串类型 1.1:CHAR类型 CHAR(size [BYTE | CHAR]) CHAR类型,定长字符串,会用空格填充来达到其最大长度.非NULL的CHAR(12)总是包含12字节信息.CHA ...
- Mysql自定义函数总结
存储函数 创建存储函数,需要使用CREATE FUNCTION语句,基本语法如下: CREATE FUNCTION func_name([func_parameter]) RETURNS TYPE [ ...
- 安装 Apache 出现 <OS 10013> 以一种访问权限不允许的方式做了一个访问套接字的尝试
在安装Apache的过程中出现: 仔细查看提示: make_sock: could not bind to address 0.0.0.0:80 恍然大悟,计算机上安装了IIS7,80端口已占用. 打 ...
- 关于linux的systemd的一些事
1. 输出运行失败的单元: systemctl --failed 2. 所有的单元文件存放在 /usr/lib/systemd/system/ 和 /etc/systemd/system/ 这两个目录 ...
- 《zw版·Halcon-delphi系列原创教程》航母舰载机·视觉定位标志的识别代码
<zw版·Halcon-delphi系列原创教程>航母舰载机·视觉定位标志的识别代码 航母舰载机机身上的黄黑圆圈的标志是什么意思,辐射?核动力?战术核弹? <百度百科>介绍如下 ...