Time Limit: 90 Sec Memory Limit: 256 MB
Submit: 128 Solved: 43
[Submit][Status][Discuss]
Description

你有n个物品和m个包。物品有重量,且不可被分割;包也有各自的容量。要把所有物品装入包中,至少需要几个包?

Input

第一行两个整数n,m(1<=n<=24,1<=m<=100),表示物品和包的数量。
第二行有n个整数a[1],a[2],…,a[n](1<=a[i]<=10^8),分别表示物品的重量。
第三行有m个整数c[1],c[2],…,c[m](1<=c[i]<=10^8),分别表示包的容量。

Output

如果能够装下,输出一个整数表示最少使用包的数目。若不能全部装下,则输出NIE。

Sample Input

4 3

4 2 10 3

11 18 9
Sample Output

2

状压dp
蛮恶心的,稍不注意就TLE

f[i]表示当前这个状态i最少需要用几个包,注意到,n<=24,容易发现,最多用n个包(虽然没什么意义),用体积大的包一定不比用体积小的包坏,所以先把包按体积从大到小排序,代码可以参考CreationAugust的  http://blog.csdn.net/creationaugust/article/details/50094881

我写几个注释。

for (int i=n;i;i--) a[(1<<(i-1))]=a[i];这里是为了方便,直接将第i个物品的体积对应到2i-1 的位置,由于是从大到小,所以不会覆盖原先信息。

lowbit的部分是按位取状态,表示判断当前这个物品能否从上一个状态加入转移到这个状态。

g[i]=-1是为了防止没有更新剩余空间为0的情况,所以外层还要特判g[i]为-1带来的影响

bzoj3717: [PA2014]Pakowanie的更多相关文章

  1. bzoj3717 [PA2014]Pakowanie 贪心+状压DP

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=3717 题解 这道题大概也就只能算常规的状压 DP 吧,但是这个状态和转移的设计还是不是很好想. ...

  2. [bzoj3717][PA2014]Pakowanie_动态规划_状压dp

    Pakowanie bzoj-3717 PA-2014 题目大意:给你n个物品m个包,物品有体积包有容量,问装下这些物品最少用几个包. 注释:$1\le n\le 24$,$1\le m\le 100 ...

  3. [PA2014]Pakowanie

    [PA2014]Pakowanie 题目大意: \(n(n\le24)\)个物品和\(m(m\le100)\)个背包,每个物体有一个体积\(a_i\),每个背包有一个容量\(c_i\).问装完所有物品 ...

  4. 【bzoj3717】[PA2014]Pakowanie 状压dp

    题解: 自己在这一类问题上想到的总是3^n的枚举法 首先背包从大到小排序 f[i]表示搞出为i的状态至少要用几个背包,g[i]表示最大剩余容量 这样就可以2^n*n 因为这么做利用了状态之间的先后顺序 ...

  5. bzoj 3717: [PA2014]Pakowanie

    Description 你有n个物品和m个包.物品有重量,且不可被分割:包也有各自的容量.要把所有物品装入包中,至少需要几个包? Input 第一行两个整数n,m(1<=n<=24,1&l ...

  6. Work at DP

    转载请注明出处:http://www.cnblogs.com/TSHugh/p/8858805.html Prepared: (无notes的波兰题目的notes见我的波兰题目补全计划)BZOJ #3 ...

  7. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  8. BZOJ 3721: PA2014 Final Bazarek

    3721: PA2014 Final Bazarek Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 645  Solved: 261[Submit][ ...

  9. BZOJ 3709: [PA2014]Bohater

    3709: [PA2014]Bohater Time Limit: 5 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 1050  Solved: ...

随机推荐

  1. [原]poj-2524(裸并查集)

    题目链接: http://poj.org/problem?id=2524 题意: n个人,m对人宗教相同,输出一共有多少个不同的宗教. 代码如下: #include<iostream> # ...

  2. BZOJ 2173 整数的lqp拆分

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2173 题意:给出输出n.设一种拆分为n=x1+x2+x3,那么这种拆分的价值为F(x1) ...

  3. WCF中配置文件解析

    WCF中配置文件解析[1] 2014-06-14 WCF中配置文件解析 参考 WCF中配置文件解析 返回 在WCF Service Configuration Editor的使用中,我们通过配置工具自 ...

  4. 《OD大数据实战》HBase环境搭建

    一.环境搭建 1. 下载 hbase-0.98.6-cdh5.3.6.tar.gz 2. 解压 tar -zxvf hbase-0.98.6-cdh5.3.6.tar.gz -C /opt/modul ...

  5. JUnit 4

    本文是转载的, 主要介绍 Junit 4 ( 搭建在 eclipse 中 ) JUnit4 初体验 Eclipse: 下载 Ant, 基于java的开源构建工具, 你可以在 http://ant.ap ...

  6. Machine Learning for hackers读书笔记(四)排序:智能收件箱

    #数据集来源http://spamassassin.apache.org/publiccorpus/ #加载数据 library(tm)library(ggplot2)data.path<-'F ...

  7. LA 3177 长城守卫

    n为偶数的时候比较简单,就是相邻两个守卫的礼物和的最大值. 首先这是个下限,其次这个值也满足题目要求,所以这就是答案了. 当n为奇数的时候上限是守卫索要礼物的最大值的三倍. 这也很容易理解,比如n=5 ...

  8. 51nod1084 矩阵取数问题 V2

    O(n4)->O(n3)妈呀为什么跑这么慢woc #include<cstdio> #include<cstring> #include<cctype> #i ...

  9. volley(4) 请求参数:data:[ { bar_remain:XX , bar_code:"XX" , bar_id: XX}], method:GET

    1. 来自于WHCombineBatchFragment.java 2.部分代码 ).).).).port + Url.LABELPRINT + "?data="+strPrint ...

  10. BZOJ 1911 特别行动队

    另一个版本的斜率优化...这个要好理解一些. #include<iostream> #include<cstdio> #include<cstring> #incl ...