【bzoj1053】反素数
【bzoj1053】反素数
题意
对于任何正整数x,其约数的个数记作g(x)。例如g(1)=1、g(6)=4。如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数。例如,整数1,2,4,6等都是反质数。现在给定一个数N,你能求出不超过N的最大的反质数么?
\(1<=N<=2,000,000,000\)
分析
设\(N={a_1}^{p_1}{a_2}^{p_2}...{a_m}^{p_m}\)
所以\(g(N)=\prod_{i=1}^m(p_i+1)\)
现在要求出不超过\(N\)的\(x\),使得\(g(x)>g(i)\)
我们尝试找出\(x\)的特性,来缩小枚举的范围。
假定\(p_1,p_2,...,p_m\)一定,那么约数个数一定。
假设\(p_1,p_2,...,p_m\)可以组合成一个数\(x<N\),那么意味着它能组合的最小的数\(x<N\),所以\(a_1,a_2,...,a_m\)一定越小越好,即取前\(m\)个素数。
而\(N\leq 2*10^9\),所以只用预处理出前20个素数即可。
而且,当\(a_1<a_2<...<a_m\)一定时,考虑\(p\)要满足什么关系。
可以得到这样的结论:\(p_1>p_2>p_3>...>p_m\),否则可以通过交换得到更小的数而可以满足条件。
所以我们先预处理出前20个素数,然后从小到大枚举当前素因子取多少个。
取一个约数个数最大的即可。
【bzoj1053】反素数的更多相关文章
- BZOJ1053 反素数
题目大意 对于任何正整数x,其约数的个数记作g(x).如果某个正整数x满足对任意的0<i<x,都有g(x)>g(i) ,则称x为反质数.现在给定一个数N,求出不超过N的最大的反质数. ...
- 【BZOJ1053】 反素数ant
BZOJ1053 反素数ant 我们先考虑唯一分解定理求出约数个数: \(x=a_1^{p_1}a_2^{p_2}a_3^{p_3}...a_k^{p_k}\) 然后\(num=\Pi_{i=1}^k ...
- BZOJ1053 [HAOI2007]反素数ant 数论
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 传送门 - BZOJ1053 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正 ...
- 【BZOJ1053】[HAOI2007]反素数(搜索)
[BZOJ1053][HAOI2007]反素数(搜索) 题面 BZOJ 洛谷 题解 大力猜一下用不了几个质因子,那么随便爆搜一下就好了. #include<iostream> #inclu ...
- 【BZOJ1053】[HAOI2007]反素数
[BZOJ1053][HAOI2007]反素数 题面 bzoj 洛谷 题解 可以从反素数的定义看出小于等于\(x\)的最大反素数一定是约数个数最多且最小的那个 可以枚举所有的质因数来求反素数,但还是跑 ...
- 【BZOJ1053】[HAOI2007]反素数ant 暴力
[BZOJ1053][HAOI2007]反素数ant Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) ...
- bzoj1053: [HAOI2007]反素数ant
51nod有一道类似的题...我至今仍然不会写暴搜!!! #include<cstdio> #include<cstring> #include<iostream> ...
- 约数 求反素数bzoj1053 bzoj1257
//约数 /* 求n的正约数集合:试除法 复杂度:O(sqrt(n)) 原理:扫描[1,sqrt(N)],尝试d能否整除n,若能,则N/d也能 */ ],m=; ;i*i<=n;i++){ ){ ...
- BZOJ1053:反素数(数学)
题目链接 对于任意的正整数\(x\),记其约数的个数为\(g(x)\).现在定义反素数:对于\(0<i<x\),都有\(g(x)>g(i)\),那么就称x为反素数. 现在给定一个数N ...
随机推荐
- codevs4817 江哥的dp题d
4817 江哥的dp题d 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 黄金 Gold [题目描述] Description 已知1-N的排列P的LIS(最长上升子序列)不超 ...
- 被指定为此窗体的 MdiParent 的窗体不是 MdiContainer。 参数名: value
解决方案 添加this.IsMdiContainer = true; 或者下面的方法
- 【jQuery】JS中拼接URL发送GET请求的中文、特殊符号的问题
> 参考的优秀文章 jQuery ajax - param() 方法 经常,我们需要在JS中拼接URL然后以GET形式提交请求.如果遇到中文.特殊符号则需要作各种处理. jQuery有一个方法非 ...
- HDU 2817 A sequence of numbers 整数快速幂
A sequence of numbers Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...
- 设置MySQL开机自动启动的方法
在windows中一般情况下mysql安装好之后就是开机自动启动不需要设置,但是如果是通过yum安装MySQL后,默认开机时不会自动启动,需要手动设置MySQL让它开机自启动. 首先,通过chkcon ...
- 一维条码打印的C#实现(Code128)
1.CODE128基础知识 CODE128有三个版本: CODE128A: 标准数字和字母, 控制符, 特殊字符 CODE128B: 标准数字和字母, 小写字母, 特殊字符 CODE128C: [00 ...
- BZOJ 3564 信号增幅仪
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3564 题意:给出平面上n个点,画出一个椭圆,椭圆的长轴是短轴的p倍,且长轴的方向为x轴逆时 ...
- jQuery模拟鼠标点击事件失效的问题
最近使用jQuery操作浏览器获取数据,需要对分页的信息进行处理,发现直接使用$('div#pager a.next').click();的这种写法无法触发点击事件. 使用trigger('click ...
- 并行parallel和并发concurrent的区别
http://stackoverflow.com/questions/1050222/concurrency-vs-parallelism-what-is-the-difference Concurr ...
- ubuntu14.04LTS 下storm单机版安装配置
1.下载storm 的安装文件 http://www.apache.org/dyn/closer.cgi/incubator/storm/apache-storm-0.9.2-incubating/a ...