POJ 3304 Segments (直线与线段是否相交)
题意 : 能否找出一条直线使得所有给定的线段在该直线上的投影有一个公共点。
思路 : 假设存在一条直线a使得所有线段在该直线上的投影有公共点,则必存在一条垂直于直线a的直线b,直线b与所有线段相交,所以问题又转变为是否存在一条直线与所在所有线段相交。
假设这样的直线存在,则这一条直线可能与某一条或者某些线段的端点重合,也可能不重合。对于那些没有在端点相交的线段,我们可以把这一条直线通过旋转或平移,让其先与一条线段在线段的端点相交(那此时这一条直线与别的线段就在别的线段的中间相交), 然后继续旋转,让这一条直线与别的直线也在端点处相交。到此为止,我们可以明白所有存在的这样的直线都可以这样平移和旋转来处理他。那么反过来,如果我们用所有的线段的端点(任意组合)构成的直线都不满足和所有的线段至少有一个公共点,也就是说不存在这样的直线。
要注意的是小于1e-8就算是重点,所以要注意判断
#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath>
#include <algorithm>
#define eps 1e-8 using namespace std ; struct point
{
double x,y;
}p[];
struct line
{
point a,b;
}L[]; double multi(point a,point b,point c)
{
return ((a.x-c.x)*(b.y-c.y) - (b.x-c.x)*(a.y-c.y)) ;
}
bool inter(line L,point a,point b)
{
double x1 = multi(L.a,a,b) ;
double x2 = multi(L.b,a,b) ;
if((x1 > eps && x2 < -eps) || (x1 < -eps && x2 > eps) || (fabs(x1) < eps) || (fabs(x2) < eps))
return true ;
return false ;
}
int main()
{
int T ,n;
scanf("%d",&T) ;
while(T--)
{
scanf("%d",&n) ;
int cnt = ;
for(int i = ; i < n ; i++)
{
scanf("%lf %lf %lf %lf",&L[i].a.x,&L[i].a.y,&L[i].b.x,&L[i].b.y) ;
p[cnt ++] = L[i].a ;
p[cnt ++] = L[i].b ;
// printf("2\n") ;
}
//printf("1\n") ;
bool ans = false ;
for(int i = ; i < cnt- ; i++)
{
for(int j = i+ ; j < cnt ; j++)
{
if(fabs(p[i].x-p[j].x) < eps && fabs(p[i].y-p[j].y) < eps) continue ;
bool flag = true ;
for(int k = ; k < n ; k++)
{
if(!inter(L[k],p[i],p[j]))
{
flag = false ;
break ;
}
}
if(flag)
{
ans = true ;
break ;
}
}
}
if(ans) puts("Yes!") ;
else puts("No!") ;
}
return ;
}
POJ 3304 Segments (直线与线段是否相交)的更多相关文章
- POJ 3304 Segments[直线与线段相交]
Segments Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13514 Accepted: 4331 Descrip ...
- Segments - POJ 3304 (判断直线与线段是否相交)
题目大意:给出一些线段,然后判断这些线段的投影是否有可能存在一个公共点. 分析:如果这些线段的投影存在一个公共点,那么过这个公共点作垂线一定与所有的直线都想交,于是题目转化成是否存在一个直线可以经 ...
- POJ 3304 Segments(计算几何:直线与线段相交)
POJ 3304 Segments 大意:给你一些线段,找出一条直线可以穿过全部的线段,相交包含端点. 思路:遍历全部的端点,取两个点形成直线,推断直线是否与全部线段相交,假设存在这种直线,输出Yes ...
- POJ 3304 Segments 判断直线和线段相交
POJ 3304 Segments 题意:给定n(n<=100)条线段,问你是否存在这样的一条直线,使得所有线段投影下去后,至少都有一个交点. 思路:对于投影在所求直线上面的相交阴影,我们可以 ...
- POJ 3304 Segments(判断直线与线段是否相交)
题目传送门:POJ 3304 Segments Description Given n segments in the two dimensional space, write a program, ...
- POJ 3304 Segments (直线和线段相交判断)
Segments Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7739 Accepted: 2316 Descript ...
- 简单几何(线段与直线的位置) POJ 3304 Segments
题目传送门 题意:有若干线段,问是否存在一条直线,所有线段投影到直线上时至少有一个公共点 分析:有一个很好的解题报告:二维平面上线段与直线位置关系的判定.首先原问题可以转换为是否存在一条直线与所有线段 ...
- POJ 3304 Segments (判断直线与线段相交)
题目链接:POJ 3304 Problem Description Given n segments in the two dimensional space, write a program, wh ...
- 判断直线与线段相交 POJ 3304 Segments
题意:在二维平面中,给定一些线段,然后判断在某直线上的投影是否有公共点. 转化,既然是投影,那么就是求是否存在一条直线L和所有的线段都相交. 证明: 下面给出具体的分析:先考虑一个特殊的情况,即n=1 ...
- poj 3304 Segments(计算直线与线段之间的关系)
Segments Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10921 Accepted: 3422 Descrip ...
随机推荐
- Power Map 入门
Excel 的 Microsoft Power Map是三维 (3-D) 数据的可视化工具,允许您以新的方式看信息.电源映射允许您发现您可能看不到传统的二维 (2-d) 表和图中的见解. 使用Powe ...
- 发布项目MVC4-EF6.0出错
出错: The Entity Framework provider type 'System.Data.Entity.SqlServer.SqlProviderServices, EntityFram ...
- exception -----> Typedefs & Classes
#include <exception> Typedefs exception_ptr 一种类型,描述了一个指向异常的指针 terminate_handler 一种类型,描述了一个适合作为 ...
- Qt 读取txt文件乱码的解决办法
Qt 读取txt文本乱码问题 2015-05-20 15:46 方法一:使用QString的fromLocal8Bit()函数 复制代码 QFile txtfile(filePath); ...
- EasyUI datagrid frozencolumn的bug???
今天碰到了个很蛋疼的问题.我用到了easyui 的 treegrid,内容只显示一列,我把它设置成了冻结列. 在谷歌调试下,因为内容比较多,所以,会有竖向的滚动条.但是,到了ie和火狐,滚动条神奇般没 ...
- JPA学习---第九节:JPA中的一对多双向关联与级联操作
一.一对多双向关联与级联操作 1.创建项目,配置文件代码如下: <?xml version="1.0" encoding="UTF-8"?> < ...
- mysql使用二进制日志恢复数据
一.恢复到某个二进制文件 1.开启二进制日志 在mysqld的配置节点下添加如下配置 log-bin="E:/Mysql57BinLog/binlog"(windows下的路径,l ...
- 轻松解决在一个虚拟主机上运行多个 ASP.NET 网站应用
不知道有没有朋友像我一样会遇到这样一个问题: 在网上购买 .NET 空间,由于虚拟主机的限制,你并不能把某个目录设为一个独立的应用,或者一些价格比较高的空间,虽然可以设置,但数量也是有限的.这个问题导 ...
- WebSocket学习
在HTML5规范中,我最喜欢的Web技术就是正迅速变得流行的WebSocket API.WebSocket提供了一个受欢迎的技术,以替代我们过去几年一直在用的Ajax技术.这个新的API提供了一个方法 ...
- android开发实现静默安装(fota升级)
这里只提供一个思路,也是咨询大神才了解到的. fota升级主要用于系统及系统应用的升级,不过貌似也会弹出提示用于用户确认.既然做到系统级别了,估计也一样可以静默安装的.