http://www.luogu.org/problem/show?pid=1040

题目描述

设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号。每个节点都有一个分数(均为正整数),记第i个节点的分数为di,tree及它的每个子树都有一个加分,任一棵子树subtree(也包含tree本身)的加分计算方法如下:

subtree的左子树的加分× subtree的右子树的加分+subtree的根的分数。

若某个子树为空,规定其加分为1,叶子的加分就是叶节点本身的分数。不考虑它的空子树。

试求一棵符合中序遍历为(1,2,3,…,n)且加分最高的二叉树tree。要求输出;

(1)tree的最高加分

(2)tree的前序遍历

输入输出格式

输入格式:

第1行:一个整数n(n<30),为节点个数。

第2行:n个用空格隔开的整数,为每个节点的分数(分数<100)。

输出格式:

第1行:一个整数,为最高加分(结果不会超过4,000,000,000)。

第2行:n个用空格隔开的整数,为该树的前序遍历。

一开始写的是在算可以取得的最大值的时候计算每个节点的左右儿子,然而这个思路并不对...因为数据规模较小,DP求完最大值后可以再记忆化搜索一次来打印先序遍历,因为第一次已经求出了所有情况的值,所以第二次DP很快

 #include<iostream>
 #include<cstdio>
 #include<cstring>
 using namespace std;
 struct Node{
     int root;
     long long val;
 };
 ;
 long long mem[maxn][maxn];
 int v[maxn][maxn],lson[maxn],rson[maxn],num[maxn],fa[maxn][maxn],n;
 int init(){
     memset(v,,sizeof(v));
     memset(lson,,sizeof(lson));
     memset(rson,,sizeof(rson));
     memset(fa,,sizeof(fa));
 }
 Node dp(int l,int r){
     if(v[l][r]) return (Node){fa[l][r],mem[l][r]};
     v[l][r]=;
     ,tfa=-;
     if(l==r){
         mem[l][r]=num[l];
         fa[l][r]=l;
         return (Node){l,num[l]};
     }
     tfa=l;ans=dp(l+,r).val+num[l];
     ).val+num[r];
     if(x>ans) ans=x,tfa=r;
     ;i<r;i++){
         x=dp(l,i-).val*dp(i+,r).val+num[i];
         if(x>ans) ans=x,tfa=i;
     }
     ,r).root;
     ).root;
     else{
         lson[tfa]=dp(l,tfa-).root;
         rson[tfa]=dp(tfa+,r).root;
     }
     mem[l][r]=ans,fa[l][r]=tfa;
     return (Node){tfa,ans};
 }
 void print(int l,int r){
     if(l==r){
         printf("%d ",l);
         return;
     }
     ,r).val+num[l];int f=l;
     ).val+num[r];
     if(x>ans) ans=x,f=r;
     ;i<r;i++){
         x=dp(l,i-).val*dp(i+,r).val+num[i];
         if(x>ans) ans=x,f=i;
     }
     printf("%d ",f);
     if(f==l){
         print(l+,r);
     }else if(f==r){
         print(l,r-);
     }else{
         print(l,f-);
         print(f+,r);
     }
 }
 void dfs(int u){
     printf("%d ",u);
     if(lson[u]) dfs(lson[u]);
     if(rson[u]) dfs(rson[u]);
 }
 int main()
 {
     scanf("%d",&n);
     init();
     ;i<=n;i++) scanf("%d",&num[i]);
     printf(,n).val);
     //dfs(dp(1,n).root);
     print(,n);
     ;
 }

NOIP2003 加分二叉树的更多相关文章

  1. cogs 106. [NOIP2003] 加分二叉树(区间DP)

    106. [NOIP2003] 加分二叉树 ★☆   输入文件:jfecs.in   输出文件:jfecs.out   简单对比时间限制:1 s   内存限制:128 MB [问题描述] 设 一个 n ...

  2. NOIP2003加分二叉树[树 区间DP]

    题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di,tree及它的每个子树都 ...

  3. 【题解】NOI2009二叉查找树 + NOIP2003加分二叉树

    自己的思维能力果然还是太不够……想到了这棵树所有的性质即中序遍历不变,却并没有想到怎样利用这一点.在想这道题的过程中走入了诸多的误区,在这里想记录一下 & 从中吸取到的教训(原该可以避免的吧) ...

  4. NOIP-2003 加分二叉树

    题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di,tree及它的每个子树都 ...

  5. NOIP2003加分二叉树

    题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第ii个节点的分数为di,treedi,tree ...

  6. CJOJ 1010【NOIP2003】加分二叉树 / Luogu 1040 加分二叉树(树型动态规划)

    CJOJ 1010[NOIP2003]加分二叉树 / Luogu 1040 加分二叉树(树型动态规划) Description 设 一个 n 个节点的二叉树 tree 的中序遍历为( 1,2,3,-, ...

  7. 加分二叉树 vijos1991 NOIP2003第三题 区间DP/树形DP/记忆化搜索

    描述 设一个n个节点的二叉树tree的中序遍历为(l,2,3,-,n),其中数字1,2,3,-,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di,tree及它的每个子树都有一 ...

  8. CODEVS1090 加分二叉树

    codevs1090 加分二叉树 2003年NOIP全国联赛提高组 题目描述 Description 设一个n个节点的二叉树tree的中序遍历为(l,2,3,…,n),其中数字1,2,3,…,n为节点 ...

  9. Vijos 1100 加分二叉树

    题目 1100 加分二叉树 2003年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB   题目描述 Description 设一个n个节点的二叉树tree的中序遍历为( ...

随机推荐

  1. ADB工具 获取ROOT权限及复制文件方法

    adb push d:\tm3_sqlit.db data/zouhao/tm3_sqlit.dbadb pull data/zouhao/tm3_sqlit.db d:\tm3_sqlit.db a ...

  2. SSH登录很慢问题的解决

    用ssh连其他linux机器,会等待10-30秒才有提示输入密码.严重影响工作效率.登录很慢,登录上去后速度正常,这种情况主要有两种可能的原因: 1. DNS反向解析的问题 OpenSSH在用户登录的 ...

  3. nginx软负载的搭建

    Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器,在高连接并发的情况下Nginx 是 Apa ...

  4. Form_Form树形结构HTree的介绍(案例)

    2013-02-09 Created By BaoXinjian

  5. 2016 Multi-University Training Contest 5 ATM Mechine

    ATM Mechine 本文转自:http://blog.csdn.net/queuelovestack/article/details/52096337 题意: 这题的意思还是比较费解的 Alice ...

  6. Spring中IoC的入门实例

    Spring中IoC的入门实例 Spring的模块化是很强的,各个功能模块都是独立的,我们可以选择的使用.这一章先从Spring的IoC开始.所谓IoC就是一个用XML来定义生成对象的模式,我们看看如 ...

  7. JAVA集合小结

    下面是我自己画的,关系画得没上面好,但我自己看着清楚些 还有一张下载来的:   有序否 允许元素重复否 Collection 否 是 List 是 是 Set AbstractSet 否 否 Hash ...

  8. .Net调用非托管代码数据类型不一致的问题

    什么是Net互操作?.Net不能直接操作非托管代码,这时就需要互操作了.   c#中调用非托管c++函数,此函数又包含指向某个结构的指针,譬如指向c#中的byte数组.对于这样的参数,考虑到非托管变量 ...

  9. Jmeter Html 报告优化

    转载自南风_real博客园:http://www.cnblogs.com/jaychang/p/5881525.html 但是最近在查阅相关资料时,发现基本都是重复一篇文章Jmeter使用笔记之htm ...

  10. SQL查询结果增加序号列

    --sql 2000 ) ,学号 ,姓名 from tb t --sql 2005 select 序号 = row_number() over(order by 学号),学号 ,姓名 from tb ...