有时候我们会遇到一类问题:求$f(n)$,当然它是不好直接计算的,但如果$F(n)=\sum\limits_{d|n}f(d)$或$F(n)=\sum\limits_{\substack{n|d\\d\leq m}}f(d)$更易于计算,我们可以用莫比乌斯反演推导出$f(n)$关于$F(n)$的表达式并求值

先定义莫比乌斯函数,若$n=\prod\limits_{i=1}^kp_i^{e_i}$,则莫比乌斯函数$\mu(n)=\begin{cases}1&n=1\\0&\exists e_i\geq2\\\left(-1\right)^k&\forall e_i=1\end{cases}$

从定义可以看出,如果一个整数$n(n\geq2)$含平方因子,那么$\mu(n)=0$,反之,如果它由互异质数相乘而得,那么$质因子个数\mu(n)=(-1)^{\text{质因子个数}}$

莫比乌斯反演定理的一种形式可以描述为“若$F(n)=\sum\limits_{d|n}f(d)$,则$f(n)=\sum\limits_{d|n}\mu(d)F\left(\dfrac nd\right)$”,接下来我们慢慢证明

先证明一个关于莫比乌斯函数的定理:$\sum\limits_{d|n}\mu(d)=[n=1]$,证明如下

当$n=1$时,显然成立

当$n\gt1$,因为对和式有贡献的$d$只可能是从$p_{1\cdots k}$中选取一些不重复的数相乘,所以(选取$i$个数的乘积作为$d$)对和式的贡献是$\binom ki(-1)^i$,所以有如下推导

$$\begin{align*}\sum\limits_{d|n}\mu(d)&=\sum\limits_{i=0}^k\binom ki(-1)^i\\&=1+\sum\limits_{i=1}^k\left(\binom{k-1}{i-1}+\binom{k-1}i\right)(-1)^i\\&=1-\binom{k-1}0+\binom{k-1}k(-1)^k\\&=0\end{align*}$$

有了这个定理,我们就可以证明莫比乌斯反演定理了

$$\begin{align*}\sum\limits_{d|n}\mu(d)F(\dfrac nd)&=\sum\limits_{d|n}\mu(d)\sum\limits_{k|\frac nd}f(k)\\&=\sum\limits_{d|n}\sum\limits_{kd|n}\mu(d)f(k)\\&=\sum\limits_{k=1}^n\sum\limits_{\substack{d|n\\kd|n}}\mu(d)f(k)\\&=\sum\limits_{k=1}^nf(k)\sum\limits_{d|\frac nk}\mu(d)\\&=\sum\limits_{k=1}^nf(k)\left[\dfrac nk=1\right]\\&=f(n)\end{align*}$$

也就是如果$1$和$f$的狄利克雷卷积是$F$,那么$F$和$\mu$的狄利克雷卷积是$f$

这个定理有另一个形式$F(n)=\sum\limits_{n|d}f(d)\Rightarrow f(n)=\sum\limits_{n|d}\mu\left(\dfrac dn\right)F(d)$

因为是倍数和,这里约定$d\leq m$,它的证明是类似的

$$\begin{align*}\sum\limits_{n|d}\mu\left(\dfrac dn\right)F(d)&=\sum\limits_{n|d}\mu\left(\dfrac dn\right)\sum\limits_{d|k}f(k)\\&=\sum\limits_{k=1}^mf(k)\sum\limits_{\substack{n|d\\d|k}}\mu\left(\dfrac dn\right)\\&=\sum\limits_{k=1}^mf(k)\sum\limits_{\frac dn|\frac kn}\mu\left(\dfrac dn\right)\\&=f(n)\end{align*}$$

这个定理可以证明一条联系莫比乌斯函数和欧拉函数的式子,令$f(n)=\varphi(n)$,则$F(n)=n$,用反演定理的形式一可以得到$\varphi(n)=\sum\limits_{d|n}\mu(d)\dfrac nd$,整理得$\dfrac{\varphi(n)}n=\sum\limits_{d|n}\dfrac{\mu(d)}d$,挺优美的

实际做题的时候不一定要用上面的形式,也可以把$[n=1]$换成$\sum\limits_{d|n}\mu(d)$,看能否方便后续计算

下面是真正的应用了:用它来做题

这题要求$\sum\limits_{x=1}^a\sum\limits_{y=1}^b\left[\gcd(x,y)=k\right]$,转化一下就是$\sum\limits_{x=1}^{\left\lfloor\frac ak\right\rfloor}\sum\limits_{y=1}^{\left\lfloor\frac bk\right\rfloor}\left[\gcd(x,y)=1\right]$,于是我们令$f(n)=\sum\limits_{x=1}^{\left\lfloor\frac ak\right\rfloor}\sum\limits_{y=1}^{\left\lfloor\frac bk\right\rfloor}\left[\gcd(x,y)=n\right]$

考虑用反演定理的形式二,得到$F(n)=\sum\limits_{x=1}^{\left\lfloor\frac ak\right\rfloor}\sum\limits_{y=1}^{\left\lfloor\frac bk\right\rfloor}\left[n|\gcd(x,y)\right]=\left\lfloor\dfrac {\left\lfloor\frac ak\right\rfloor}n\right\rfloor\left\lfloor\dfrac{\left\lfloor\frac bk\right\rfloor}n\right\rfloor$,于是$f(n)=\sum\limits_{\substack{n|d\\d\leq\min\left\{\left\lfloor\frac ak\right\rfloor,\left\lfloor\frac bk\right\rfloor\right\}}}\mu\left(\dfrac dn\right)\left\lfloor\dfrac a{kd}\right\rfloor\left\lfloor\dfrac b{kd}\right\rfloor$

答案是$f(1)=\sum\limits_{d=1}^{\min\left\{\left\lfloor\frac ak\right\rfloor,\left\lfloor\frac bk\right\rfloor\right\}}\mu(d)\left\lfloor\dfrac a{kd}\right\rfloor\left\lfloor\dfrac b{kd}\right\rfloor$

学习了一种新的更简洁的写法,这种写法用一种特殊的技巧来快速枚举$d$使得每迭代一次$\left\lfloor\dfrac nd\right\rfloor$就改变一次

for(i=1;i<=n;i=nex+1){
	nex=n/(n/i);
	//计算[i,nex]的答案
}

循环内的第一行是最重要的,原理大概是这样

假设当$i\in[l,r]$时$\left\lfloor\dfrac ni\right\rfloor=k$且$\left\lfloor\dfrac n{r+1}\right\rfloor\lt k$,那么因为$\left\lfloor\dfrac nr\right\rfloor=k$所以$\left\lfloor\dfrac{\frac nk}r\right\rfloor=1$,所以$\dfrac nk\geq r$

如果$\dfrac nk\geq r+1$,那么$\dfrac n{r+1}\geq k$,这与$\left\lfloor\dfrac n{r+1}\right\rfloor\lt k$矛盾

所以$r\leq\dfrac nk\lt r+1$,即$\left\lfloor\dfrac nk\right\rfloor=r$

这样就解释清楚了为什么要这样写,整个题就做完了

#include<stdio.h>
#define ll long long
#define T 50000
int pr[50010],mu[50010];
bool np[50010];
void sieve(){
	int i,j,m;
	m=0;
	np[1]=1;
	mu[1]=1;
	for(i=2;i<=T;i++){
		if(!np[i]){
			m++;
			pr[m]=i;
			mu[i]=-1;
		}
		for(j=1;j<=m;j++){
			if(pr[j]*(ll)i>T)break;
			np[i*pr[j]]=1;
			if(i%pr[j]==0){
				mu[i*pr[j]]=0;
				break;
			}else
				mu[i*pr[j]]=-mu[i];
		}
	}
	for(i=2;i<=T;i++)mu[i]+=mu[i-1];
}
int a,b;
int min(int a,int b){return a<b?a:b;}
void swap(int&a,int&b){a^=b^=a^=b;}
int F(int n){return(a/n)*(b/n);}
int mob(){
	int i,s=0,nex;
	if(a>b)swap(a,b);
	for(i=1;i<=a;i=nex+1){
		nex=min(a/(a/i),b/(b/i));
		s+=F(i)*(mu[nex]-mu[i-1]);
	}
	return s;
}
int main(){
	sieve();
	int t,d;
	scanf("%d",&t);
	while(t--){
		scanf("%d%d%d",&a,&b,&d);
		a/=d;
		b/=d;
		printf("%d\n",mob());
	}
}

感觉写太多字了,有点肝不动...

[luogu3455]ZAP-Queries的更多相关文章

  1. 【Luogu3455】【POI2007】ZAP-Queries(莫比乌斯反演)

    [Luogu3455][POI2007]ZAP-Queries(莫比乌斯反演) 题面 题目描述 FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x ...

  2. 实践 HTML5 的 CSS3 Media Queries

    先来介绍下 media,确切的说应该是 CSS media queries(CSS 媒体查询),媒体查询包含了一个媒体类型和至少一个使用如宽度.高度和颜色等媒体属性来限制样式表范围的表达式.CSS3 ...

  3. SQL Server 阻止了对组件 'Ad Hoc Distributed Queries' 的 STATEMENT'OpenRowset/OpenDatasource' 的访问

    delphi ado 跨数据库访问 语句如下 ' and db = '帐套1' 报错内容是:SQL Server 阻止了对组件 'Ad Hoc Distributed Queries' 的 STATE ...

  4. CSS3 Media Queries 实现响应式设计

    在 CSS2 中,你可以为不同的媒介设备(如屏幕.打印机)指定专用的样式表,而现在借助 CSS3 的 Media Queries 特性,可以更为有效的实现这个功能.你可以为媒介类型添加某些条件,检测设 ...

  5. 使用CSS3 Media Queries实现网页自适应

    原文来源:http://webdesignerwall.com 翻译:http://xinyo.org 当今银屏分辨率从 320px (iPhone)到 2560px (大屏显示器)或者更大.人们也不 ...

  6. SQL Queries from Transactional Plugin Pipeline

    Sometimes the LINQ, Query Expressions or Fetch just doesn't give you the ability to quickly query yo ...

  7. Media Queries 详解

    Media Queries直译过来就是“媒体查询”,在我们平时的Web页面中head部分常看到这样的一段代码:  <link href="css/reset.css" rel ...

  8. SPOJ GSS3 Can you answer these queries III[线段树]

    SPOJ - GSS3 Can you answer these queries III Description You are given a sequence A of N (N <= 50 ...

  9. SPOJ GSS1 Can you answer these queries I[线段树]

    Description You are given a sequence A[1], A[2], ..., A[N] . ( |A[i]| ≤ 15007 , 1 ≤ N ≤ 50000 ). A q ...

  10. 【Codeforces710F】String Set Queries (强制在线)AC自动机 + 二进制分组

    F. String Set Queries time limit per test:3 seconds memory limit per test:768 megabytes input:standa ...

随机推荐

  1. bzoj3196 [TYVJ1730]二逼平衡树 树套树 线段树套替罪羊树

    人傻自带大常数 二分的可行性证明: 贴近他的正确答案不会被当作次优解删掉,因为,若二分在他右边发生,那么二分一定会把左边作为优解,左边同理,所以他一定是被扣掉的所以最后一个小于等于一定是正确答案 #i ...

  2. 做一个所见即所得的CSS效果

    style 也是标签(在非ie内核的浏览器中支持),我们将style设置成 contenteditable的时候,那么那的内容就可以编辑了.仔细的体验下,如果我们将背景修改成红色的.那么只要书写完,立 ...

  3. springMvc--请求的跳转和传值

    springMvc--请求的跳转和传值 目录 forword跳转页面的三种方式 1.使用serlvet 2.使用Model对象 3.使用ModelAndView redirect跳转到页面 使用ser ...

  4. [poj 2104]主席树+静态区间第k大

    题目链接:http://poj.org/problem?id=2104 主席树入门题目,主席树其实就是可持久化权值线段树,rt[i]维护了前i个数中第i大(小)的数出现次数的信息,通过查询两棵树的差即 ...

  5. java中枚举类到高级使用

    参考博文: http://blog.csdn.net/qq_31655965/article/details/55049192 http://www.cnblogs.com/zhaoyanjun/p/ ...

  6. jquery 的相关 width 和 height 方法辨析

    width() 设置或返回元素的宽度(不包括内边距.边框或外边距). height() 设置或返回元素的高度(不包括内边距.边框或外边距). innerWidth() 返回元素的宽度(包括内边距). ...

  7. 打砖块(codevs 1257)

    题目描述 Description 在一个凹槽中放置了n层砖块,最上面的一层有n块砖,第二层有n-1块,……最下面一层仅有一块砖.第i层的砖块从左至右编号为1,2,……i,第i层的第j块砖有一个价值a[ ...

  8. c++对拍实现

    直接上代码吧. #include<bits/stdc++.h> using namespace std; int main(){ while(1){ system("./cute ...

  9. C# 从服务器下载文件

    一.//TransmitFile实现下载 protected void Button1_Click(object sender, EventArgs e) { /* 微软为Response对象提供了一 ...

  10. Java相关框架

    框架 类型 设计(个人理解) HK2 自动注入框架 Jersey RESTful Jetty HTTP服务 Retrofit HTTP客户端 ActiveMQ 消息组件 主题.队列 Redis K-V ...