【BZOJ2226】[Spoj 5971] LCMSum 莫比乌斯反演(欧拉函数?)
【BZOJ2226】[Spoj 5971] LCMSum
Description
Input
Output
Sample Input
1
2
5
Sample Output
4
55
HINT
Constraints
1 <= T <= 300000
1 <= n <= 1000000
题解:好吧我naive了,别人都用欧拉函数就我用莫比乌斯反演,还是写一发吧~
然后线性筛∑μ(d)d,然后O(nlogn)枚举n的约数就行了
#include <cstdio>
#include <cstring>
#include <iostream>
#include <vector>
using namespace std;
const int m=1000000;
typedef long long ll;
int n,T,num,tot;
int pri[m/10],to[m*14],next[m*14],head[m+10];
bool np[m+10];
vector<int> v[m+10];
ll sm[m+10],ans;
int main()
{
int i,j;
for(i=1;i<=m;i++) for(j=i;j<=m;j+=i) to[++tot]=i,next[tot]=head[j],head[j]=tot;
sm[1]=1;
for(i=2;i<=m;i++)
{
if(!np[i]) pri[++num]=i,sm[i]=1-i;
for(j=1;j<=num&&i*pri[j]<=m;j++)
{
np[i*pri[j]]=1;
if(i%pri[j]==0)
{
sm[i*pri[j]]=sm[i];
break;
}
sm[i*pri[j]]=sm[i]*(1ll-pri[j]);
}
}
scanf("%d",&T);
while(T--)
{
scanf("%d",&n),ans=0;
for(i=head[n];i;i=next[i]) ans+=sm[n/to[i]]*to[i]*(to[i]+1)>>1;
printf("%lld\n",ans*n);
}
return 0;
}
【BZOJ2226】[Spoj 5971] LCMSum 莫比乌斯反演(欧拉函数?)的更多相关文章
- $BZOJ$2818 $gcd$ 莫比乌斯反演/欧拉函数
正解:莫比乌斯反演/欧拉函数 解题报告: 传送门$QwQ$ 一步非常显然的变形,原式=$\sum_{d=1,d\in prim}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd ...
- [luogu P2586] GCD 解题报告 (莫比乌斯反演|欧拉函数)
题目链接:https://www.luogu.org/problemnew/show/P2568#sub 题目大意: 计算$\sum_{x=1}^n\sum_{y=1}^n [gcd(x,y)==p ...
- luogu2658 GCD(莫比乌斯反演/欧拉函数)
link 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 1<=N<=10^7 (1)莫比乌斯反演法 发现就是YY的GCD,左转YY的GCD ...
- 洛谷 - P1390 - 公约数的和 - 莫比乌斯反演 - 欧拉函数
https://www.luogu.org/problemnew/show/P1390 求 $\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m} gcd(i,j) $ ...
- BZOJ2005:[NOI2010]能量采集(莫比乌斯反演,欧拉函数)
Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...
- HDU 6390 GuGuFishtion(莫比乌斯反演 + 欧拉函数性质 + 积性函数)题解
题意: 给定\(n,m,p\),求 \[\sum_{a=1}^n\sum_{b=1}^m\frac{\varphi(ab)}{\varphi(a)\varphi(b)}\mod p \] 思路: 由欧 ...
- BZOJ 2226: [Spoj 5971] LCMSum 莫比乌斯反演 + 严重卡常
Code: #pragma GCC optimize(2) #include<bits/stdc++.h> #define setIO(s) freopen(s".in" ...
- BZOJ.2705.[SDOI2012]Longge的问题(莫比乌斯反演 欧拉函数)
题目链接 \(Description\) 求\[\sum_{i=1}^n\gcd(i,n)\] \(Solution\) \[ \begin{aligned} \sum_{i=1}^n\gcd(i,n ...
- BZOJ4804 欧拉心算(莫比乌斯反演+欧拉函数+线性筛)
一通套路后得Σφ(d)μ(D/d)⌊n/D⌋2.显然整除分块,问题在于怎么快速计算φ和μ的狄利克雷卷积.积性函数的卷积还是积性函数,那么线性筛即可.因为μ(pc)=0 (c>=2),所以f(pc ...
随机推荐
- 【C/C++学院】0831-类与对象的异常/面试100题1-100
类与对象的异常 Cpp异常 #include <iostream> #include <string.h> using namespace std; //标识错误的类型 cla ...
- 初识FASTBuild 一个大幅提升C/C++项目编译速度的分布式编译工具
FASTBuild 是一款高性能.开源的构建系统,支持高度可扩展的编译,缓存和网络分发. 以上是FASTBuild官网对其产品的一句话介绍. FASTBuild 的开源地址:https://githu ...
- lodash round
_.round(number, [precision=0]) 根据 precision 四舍五入 number. _.round(4.006); // => 4 _.round(4.006, 2 ...
- redis源代码分析(5)——aof
前面几篇基本介绍了redis的主要功能.流程.接下来是一些相对独立的部分,首先看一下持久化. redis持久化支持两种方式:RDB和AOF,我们首先看一下AOF的实现. AOF(Append only ...
- 一个请求在Struts2框架中的处理的步骤
- H5页面在IOS下不会自动播放音乐的坑
document.addEventListener(‘DOMContentLoaded‘, function () { function audioAutoPlay() { var audio = d ...
- HDU 3861 The King’s Problem(强连通+二分图最小路径覆盖)
HDU 3861 The King's Problem 题目链接 题意:给定一个有向图,求最少划分成几个部分满足以下条件 互相可达的点必须分到一个集合 一个对点(u, v)必须至少有u可达v或者v可达 ...
- Angularjs学习笔记8_directive2
指令难点在于参数 angular.module('app', []) .directive('myDirective', function() { return { restrict: String, ...
- 如何理解HTTP协议的“无连接,无状态”特点
是一个属于应用层的面向对象的协议,HTTP 协议一共有五大特点:1.支持客户/服务器模式;2.简单快速;3.灵活;4.无连接;5.无状态. 无连接 无连接的含义是限制每次连接只处理一个请求.服务器处理 ...
- jquery的ajax-serialize()
jQuery ajax - serialize() 方法 jQuery Ajax 参考手册 实例 输出序列化表单值的结果: $("button").click(function() ...