【BZOJ2226】[Spoj 5971] LCMSum

Description

Given n, calculate the sum LCM(1,n) + LCM(2,n) + .. + LCM(n,n), where LCM(i,n) denotes the Least Common Multiple of the integers i and n.

Input

The first line contains T the number of test cases. Each of the next T lines contain an integer n.

Output

Output T lines, one for each test case, containing the required sum.

Sample Input

3
1
2
5

Sample Output

1
4
55

HINT

Constraints
1 <= T <= 300000
1 <= n <= 1000000

题解:好吧我naive了,别人都用欧拉函数就我用莫比乌斯反演,还是写一发吧~

然后线性筛∑μ(d)d,然后O(nlogn)枚举n的约数就行了

>欧拉函数做法

#include <cstdio>
#include <cstring>
#include <iostream>
#include <vector>
using namespace std;
const int m=1000000;
typedef long long ll;
int n,T,num,tot;
int pri[m/10],to[m*14],next[m*14],head[m+10];
bool np[m+10];
vector<int> v[m+10];
ll sm[m+10],ans;
int main()
{
int i,j;
for(i=1;i<=m;i++) for(j=i;j<=m;j+=i) to[++tot]=i,next[tot]=head[j],head[j]=tot;
sm[1]=1;
for(i=2;i<=m;i++)
{
if(!np[i]) pri[++num]=i,sm[i]=1-i;
for(j=1;j<=num&&i*pri[j]<=m;j++)
{
np[i*pri[j]]=1;
if(i%pri[j]==0)
{
sm[i*pri[j]]=sm[i];
break;
}
sm[i*pri[j]]=sm[i]*(1ll-pri[j]);
}
}
scanf("%d",&T);
while(T--)
{
scanf("%d",&n),ans=0;
for(i=head[n];i;i=next[i]) ans+=sm[n/to[i]]*to[i]*(to[i]+1)>>1;
printf("%lld\n",ans*n);
}
return 0;
}

【BZOJ2226】[Spoj 5971] LCMSum 莫比乌斯反演(欧拉函数?)的更多相关文章

  1. $BZOJ$2818 $gcd$ 莫比乌斯反演/欧拉函数

    正解:莫比乌斯反演/欧拉函数 解题报告: 传送门$QwQ$ 一步非常显然的变形,原式=$\sum_{d=1,d\in prim}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd ...

  2. [luogu P2586] GCD 解题报告 (莫比乌斯反演|欧拉函数)

    题目链接:https://www.luogu.org/problemnew/show/P2568#sub 题目大意: 计算​$\sum_{x=1}^n\sum_{y=1}^n [gcd(x,y)==p ...

  3. luogu2658 GCD(莫比乌斯反演/欧拉函数)

    link 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 1<=N<=10^7 (1)莫比乌斯反演法 发现就是YY的GCD,左转YY的GCD ...

  4. 洛谷 - P1390 - 公约数的和 - 莫比乌斯反演 - 欧拉函数

    https://www.luogu.org/problemnew/show/P1390 求 $\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m} gcd(i,j) $ ...

  5. BZOJ2005:[NOI2010]能量采集(莫比乌斯反演,欧拉函数)

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...

  6. HDU 6390 GuGuFishtion(莫比乌斯反演 + 欧拉函数性质 + 积性函数)题解

    题意: 给定\(n,m,p\),求 \[\sum_{a=1}^n\sum_{b=1}^m\frac{\varphi(ab)}{\varphi(a)\varphi(b)}\mod p \] 思路: 由欧 ...

  7. BZOJ 2226: [Spoj 5971] LCMSum 莫比乌斯反演 + 严重卡常

    Code: #pragma GCC optimize(2) #include<bits/stdc++.h> #define setIO(s) freopen(s".in" ...

  8. BZOJ.2705.[SDOI2012]Longge的问题(莫比乌斯反演 欧拉函数)

    题目链接 \(Description\) 求\[\sum_{i=1}^n\gcd(i,n)\] \(Solution\) \[ \begin{aligned} \sum_{i=1}^n\gcd(i,n ...

  9. BZOJ4804 欧拉心算(莫比乌斯反演+欧拉函数+线性筛)

    一通套路后得Σφ(d)μ(D/d)⌊n/D⌋2.显然整除分块,问题在于怎么快速计算φ和μ的狄利克雷卷积.积性函数的卷积还是积性函数,那么线性筛即可.因为μ(pc)=0 (c>=2),所以f(pc ...

随机推荐

  1. 说说Linux文件权限那些事儿

    文件全部权 显示文件的全部权 更改文件的全部权 文件的权限 改动文件的权限 用符号表示法改动 用数字表示法改动 使用umask指定默认的文件权限 參考文献 首先我们要知道Linux的标准文件权限和安全 ...

  2. Windows右击无新建文本文档怎么办

    右击无新建文本文档2008-07-26 16:51 刚在网上找的,在运行项输入notepad,把下面的复制进去,然后保存为123.reg,双击导入. REGEDIT4 [HKEY_CLASSES_RO ...

  3. Python——Baseequestandler class (Interesting found in python‘s document)

    class BaseHTTPRequestHandler(socketserver.StreamRequestHandler) HTTP request handler base class. |   ...

  4. scrollBy 相对滚动

    scrollBy可以相对当前位置移动滚动条,而不是移动到绝对位置 scrollBy(0, 100); // 滚动条下移100px

  5. Linux 后台开发常用命令

    1.automake编译 autoreconf -isv ./configure make 2.远程获取代码 rsync -aPvr --exclude=*/log/* *.*.*.*::home/s ...

  6. iOS 程序进入后台,包含用户上拉快捷菜单导致程序失去活跃的研究

    今日在使用某App时候,突然发现上拉菜单.程序视频扔在播放,咦!引起了我的兴趣. 首先,列出两个方法, 第一个方法是AppDelegate的代理.当程序进入后台时候调用 - (void)applica ...

  7. 02-创建hibernate工程

    编写hibernate需要的步骤 1,创建hibernate的配置文件 2,创建持久化类 3,创建对象-关系映射文件 4,通过hibernate API编写访问数据库代码 准备需要的文件. 1,准备一 ...

  8. SSH框架阶段 ——SSH的优缺点,使用场景?

    Hibernate优点: (1) 对象/关系数据库映射(ORM)它使用时只需要操纵对象,使开发更对象化,抛弃了数据库中心的思想,完全的面向对象思想(2) 透明持久化(persistent)带有持久化状 ...

  9. Quartz的cron表达式 (spring定时器 crontab)

    http://tangshuo.iteye.com/blog/184824 表达式位数最少六位,如每天凌晨一点启动:"0 0 1 * * ?" 顺序按   秒 分 时 日期 月份 ...

  10. Python进行数值计算

    1.计算积分 (1)计算定积分 from scipy import integrate #定义函数def half_circle(x): return (1-x**2)**0.5 pi_half, e ...