【BZOJ5047】空间传送装置

Description

太空中一共有n座星球,它们之间可以通过空间传送装置进行转移。空间传送装置分为m种,第i种装置可以用4个参数a_i,b_i,c_i,d_i来描述。因为时空抖动的问题,在非整数时刻禁止使用空间传送装置。如果在整数s时刻使用装置,那么需要花费((a_i*s+b_i) mod c_i)+d_i单位时间才能完成传送。现在是s时刻,小Q位于1号星球,请写一个程序计算从1号星球到每个星球最少需要的时间。

Input

第一行包含4个正整数n,m,s,e(2<=n<=100000,1<=m<=50,1<=s<=2000,1<=e<=200000)
分别表示星球的个数、空间传送装置的种类数、当前的时间以及空间传送装置的个数。
接下来m行,每行4个正整数a_i,b_i,c_i,d_i(1<=a_i,b_i,c_i,d_i<=2000),依次描述每种装置的参数。
接下来e行,每行3个正整数u_i,v_i,w_i(1<=u_i,v_i<=n,u_i!=v_i,1<=w_i<=m)
表示从星球u_i可以使用第w_i种装置单向传送到星球v_i。

Output

输出n-1行,每行一个整数,第i行表示从1到i+1的最少所需时间,若无解输出-1。

Sample Input

3 2 1 3
1 1 5 1
2 2 7 1
1 2 1
2 3 2
3 1 1

Sample Output

3
6
HINT
1到3:在时刻1使用第一种装置从1传送到2,花费时间3,再等待2单位时间,于时刻6使用第二种装置到达3,花费时间1。

题解:需要发现两个很重要的性质,如果在s时刻到达了某条边的起点,则通过这条边的最短时间是固定的。并且,s越早,通过的时间一定不会越晚,这就意味着在跑最短路时,Dijkstra的贪心策略是行得通的。

所以可以先预处理出f[i][j]代表在j时刻想要通过种类为i的边,所需要的最短时间是多少。因为有%c[i]的存在,所以j最多为3000。我们用前缀和后缀最大值来处理f数组即可。然后就能跑Dij了。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
#include <utility>
#define mp(A,B) make_pair(A,B)
using namespace std;
typedef pair<int,int> pii;
int n,cnt,m,S,E;
int A[2010],B[2010],C[2010],D[2010],head[100010],val[200010],T[55][2010],tmp1[2010],tmp2[2010];
int dis[100010],vis[100010],to[200010],next[200010];
priority_queue<pii> q;
inline void add(int a,int b,int c)
{
to[cnt]=b,val[cnt]=c,next[cnt]=head[a],head[a]=cnt++;
}
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
int main()
{
n=rd(),m=rd(),S=rd(),E=rd();
int i,j,a,b,c,u;
for(i=1;i<=m;i++)
{
A[i]=rd(),B[i]=rd(),C[i]=rd(),D[i]=rd();
for(j=0;j<C[i];j++) val[j]=(A[i]*j+B[i])%C[i]+D[i];
tmp1[0]=val[0],tmp2[C[i]-1]=C[i]-1+val[C[i]-1];
for(j=1;j<C[i];j++) tmp1[j]=min(tmp1[j-1],j+val[j]);
for(j=C[i]-2;j>=0;j--) tmp2[j]=min(tmp2[j+1],j+val[j]);
for(j=0;j<C[i];j++) T[i][j]=min(C[i]-j+tmp1[j],tmp2[j]-j);
}
memset(head,-1,sizeof(head)),memset(dis,0x3f,sizeof(dis));
for(i=1;i<=E;i++) a=rd(),b=rd(),c=rd(),add(a,b,c);
dis[1]=S;
q.push(mp(-S,1));
while(!q.empty())
{
u=q.top().second,q.pop();
if(vis[u]) continue;
vis[u]=1;
for(i=head[u];i!=-1;i=next[i])
{
if(dis[to[i]]>dis[u]+T[val[i]][dis[u]%C[val[i]]])
{
dis[to[i]]=dis[u]+T[val[i]][dis[u]%C[val[i]]];
q.push(mp(-dis[to[i]],to[i]));
}
}
}
for(i=2;i<=n;i++)
{
if(dis[i]==0x3f3f3f3f) printf("-1\n");
else printf("%d\n",dis[i]-S);
}
return 0;
}//3 2 1 3 1 1 5 1 2 2 7 1 1 2 1 2 3 2 3 1 1

【BZOJ5047】空间传送装置 最短路的更多相关文章

  1. bzoj5047: 空间传送装置

    Description 太空中一共有n座星球,它们之间可以通过空间传送装置进行转移.空间传送装置分为m种,第i种装置可以用4个参 数a_i,b_i,c_i,d_i来描述.因为时空抖动的问题,在非整数时 ...

  2. BZOJ5047 空间传送装置 2017年9月月赛 最短路 SPFA

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ5047 题意概括 概括??~别为难语文做一题错两题的我了…… 题解 我们发现,对于某一种装置,有c种 ...

  3. bzoj5047 [Lydsy1709月赛]空间传送装置 最短路

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=5047 题解 题目中没有说可以停留在一个点等待.问了别人才知道停留是可以的. 那么既然停留是可以 ...

  4. 【bzoj5047】空间传送装置 堆优化Dijkstra

    题目描述 n个点e条边的有向图,每条边是m种类型之一.第i种类型在第x时刻通过所花费的时间为$(a_i*x+b_i)\mod c_i+d_i$.可以在某个点停留.问:在s时刻从1号点出发,到达每个点所 ...

  5. 【BZOJ 5047 空间传送装置】

    Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 282  Solved: 121[Submit][Status][Discuss] Descriptio ...

  6. 【GDOI】【图论-最短路】时间与空间之旅

    最近打的一场校内训练的某题原题... 题目如下: Description 公元22××年,宇宙中最普遍的交通工具是spaceship.spaceship的出现使得星系之间的联系变得更为紧密,所以spa ...

  7. bzoj 1001狼抓兔子(对偶图+最短路)最大流

    推荐文章:<浅析最大最小定理在信息学竞赛中的应用>--周冬 题目 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还 ...

  8. Vijos1019 补丁VS错误[最短路 状态压缩]

      描述 错误就是人们所说的Bug.用户在使用软件时总是希望其错误越少越好,最好是没有错误的.但是推出一个没有错误的软件几乎不可能,所以很多软件公司都在疯狂地发放补丁(有时这种补丁甚至是收费的).T公 ...

  9. NUC_HomeWork1 -- POJ2067(最短路)

    C - Fire Station Description A city is served by a number of fire stations. Some residents have comp ...

随机推荐

  1. 三位一体的漏洞分析方法-web应用安全测试方法

    本文转自乌云知识库 0x00 前言 节选自: http://www.owasp.org.cn/OWASP_Conference/owasp-20140924/02OWASPWeb20140915.pd ...

  2. Selenium webdriver Java 元素操作

    本来这些东西网上一搜一大堆,但是本着收集的精神,整理一份放着吧!哈!哈!哈! 1. 输入框(text field or textarea) WebElement element = driver.fi ...

  3. mui 根据 json 数据动态创建列表

    使用 underscore.js 模块解析 Underscore提供了一个轻量级的模板解析函数,它可以帮助我们有效地组织页面结构和逻辑. 实例: <!DOCTYPE html> <h ...

  4. JavaScript原生函数(内置函数)

    1.JavaScript原生函数(内置函数) JavaScript原生函数(内置函数)有: String() Number() Boolean() Array() Object() Function( ...

  5. HDU 5094 --Maze【BFS &amp;&amp; 状态压缩】

    Maze Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 100000/100000 K (Java/Others) Total Sub ...

  6. 使用LoadRunner监控Apache的步骤 (转)

    一.Apache上的设置 打开<Apache Installation>/conf/httpd.conf,进行如下修改: 1.  设置允许查看Apache运行状态的主机 # # Allow ...

  7. 02-4设置第一启动项--U盘装系统中bios怎么设置USB启动

    整个U盘启动里最关键的一步就是设置U盘启动了,本教程内只是以特定型号的电脑为例进行演示,鉴于各种电脑不同BIOS设置U盘启动各有差异,所以如果下面的演示不能适用于你的电脑,建议去百度或者谷歌搜索一下你 ...

  8. 错误: ISO C++ 不同意在类内初始化很量静态成员

    错误: ISO C++ 不同意在类内初始化很量静态成员      今天開始学C++ primer,在牵扯到Sales_item.h头文件时.出现了一些问题(和C++11新特性相关),当前的编译器版本号 ...

  9. http://www.allegro-skill.com/thread-2506-1-1.html

    http://www.allegro-skill.com/thread-2506-1-1.html

  10. Java里的并发容器与安全共享策略总结

    一.并发容器 ArrayList --> CopyOnWriteArrayList 概念 : 简单的讲就是写操作时赋值,当有新元素添加到CopyOnWriteArrayList时,它先从原有的数 ...