In mathematics, the Schwartz kernel theorem is a foundational result in the theory of generalized functions, published by Laurent Schwartz in 1952. It states, in broad terms, that the generalized functions introduced by Schwartz (Schwartz distributions) have a two-variable theory that includes all reasonable bilinear forms on the space   of test functions. The space  itself consists of smooth functions of compact support.

在数学中,施瓦茨核定理是广义函数理论的一个基本结果,由Laurent Schwartz在1952年发表。广义地说,它表明,由Schwartz引入的广义函数具有双变量理论,包含在测试函数的空间D上的所有合理的双线性形式。空间D自身由紧凑支持型的光滑函数组成。

Statement of the theorem定理的描述

Let  and  be open sets in  . Every distribution  defines a continuous linear map  such that

让X和Y为Rn上的开放集合。每一个分布定义了一个连续的线性映射 从而使得

for every . Conversely, for every such continuous linear map  there exists one and only one distribution  such that (1) holds. The distribution  is the kernel of the map .

对于每一个。相反地,对于每一个这样的连续线性映射K,存在有且仅有一个分布使得(1)成立。分布k就是映射K的核。

Note

Given a distribution  one can always write the linear map K informally as

so that

.

Integral kernels

The traditional kernel functions K(xy) of two variables of the theory of integral operators having been expanded in scope to include their generalized function analogues, which are allowed to be more singular in a serious way, a large class of operators from D to its dual space D′ of distributions can be constructed. The point of the theorem is to assert that the extended class of operators can be characterised abstractly, as containing all operators subject to a minimum continuity condition. A bilinear form on D arises by pairing the image distribution with a test function.

A simple example is that the identity operator I corresponds to δ(x − y), in terms of the Dirac delta function δ. While this is at most an observation, it shows how the distribution theory adds to the scope. Integral operators are not so 'singular'; another way to put it is that for K a continuous kernel, only compact operators are created on a space such as the continuous functions on [0,1]. The operator I is far from compact, and its kernel is intuitively speaking approximated by functions on [0,1] × [0,1] with a spike along the diagonal x = y and vanishing elsewhere.

This result implies that the formation of distributions has a major property of 'closure' within the traditional domain of functional analysis. It was interpreted (comment of Jean Dieudonné) as a strong verification of the suitability of the Schwartz theory of distributions to mathematical analysis more widely seen. In his Éléments d'analyse volume 7, p. 3 he notes that the theorem includes differential operators on the same footing as integral operators, and concludes that it is perhaps the most important modern result of functional analysis. He goes on immediately to qualify that statement, saying that the setting is too 'vast' for differential operators, because of the property of monotonicity with respect to the support of a function, which is evident for differentiation. Even monotonicity with respect to singular support is not characteristic of the general case; its consideration leads in the direction of the contemporary theory of pseudo-differential operators.

Smooth manifolds

Dieudonné proves a version of the Schwartz result valid for smooth manifolds, and additional supporting results, in sections 23.9 to 23.12 of that book.

References

External links

CategoriesGeneralized functions Transforms Theorems in functional analysis

>> 施瓦兹引理:https://baike.baidu.com/item/施瓦兹引理/18984053

>>Schwartz space:https://en.wikipedia.org/wiki/Schwartz_space

>>Kernel:https://en.wikipedia.org/wiki/Kernel

>>FOURIER STANDARD SPACES and the Kernel Theorem:https://www.univie.ac.at/nuhag-php/dateien/talks/3338_Garching1317.pdf

>>施瓦兹广义函数理论的成因探析:http://www.doc88.com/p-3498616571581.html

>>施瓦兹空间的成因解析:http://www.doc88.com/p-5778688208231.html

>>Cours d'analyse. Théorie des distributions et analyse de Fourier(英文).PDF :https://max.book118.com/html/2017/0502/103891395.shtm

Schwartz kernel theorem施瓦兹核定理的更多相关文章

  1. 旋度定理(Curl Theorem)和散度定理(Divergence theorem)

    原文链接 首先说说格林公式(Green's theorem).对于一段封闭曲线,若其围城的区域D为单连通区域(内部任意曲线围城的区域都属于院区域),则有如下公式: 其中其中L为D的边界,取正方向.如果 ...

  2. weighted Kernel k-means 加权核k均值算法理解及其实现(一)

    那就从k-means开始吧 对于机器学习的新手小白来说,k-means算法应该都会接触到吧.传统的k-means算法是一个硬聚类(因为要指定k这个参数啦)算法.这里利用百度的解释 它是数据点到原型的某 ...

  3. Matrix_tree Theorem 矩阵树定理学习笔记

    Matrix_tree Theorem: 给定一个无向图, 定义矩阵A A[i][j] = - (<i, j>之间的边数) A[i][i] = 点i的度数 其生成树的个数等于 A的任意n ...

  4. [spoj104][Highways] (生成树计数+矩阵树定理+高斯消元)

    In some countries building highways takes a lot of time... Maybe that's because there are many possi ...

  5. Latex中定义、定理、引理、证明 设置方法总结

    Latex中定义.定理.引理.证明 设置方法总结 在LaTex中需要有关定理.公理.命题.引理.定义等时,常用如下命令 \newtheorem{定理环境名}{标题}[主计数器名] \newtheore ...

  6. opencv-8-图像核与蒙板操作

    opencv-8-图像核与蒙板操作 opencvc++qt 开始之前 在准备开始的时候, 我大概列了一个opencv 章节列表, 按照章节进行写, 写到某些部分的时候再具体调整章节内容, 完成了之后, ...

  7. Kernel PCA for Novelty Detection

    目录 引 主要内容 的选择 数值实验 矩形框 spiral 代码 Hoffmann H. Kernel PCA for novelty detection[J]. Pattern Recognitio ...

  8. 【Math for ML】线性代数-单射,满射,双射,同构,同态,仿射

    I. 映射(Mapping) 1. 单射(Injective) 函数f 是单射当且仅当若f(x) = f(y) 则 x = y. 例子: f(x) = x+5 从实数集\(R\)到\(R\)是个单射函 ...

  9. Reading | 《DEEP LEARNING》

    目录 一.引言 1.什么是.为什么需要深度学习 2.简单的机器学习算法对数据表示的依赖 3.深度学习的历史趋势 最早的人工神经网络:旨在模拟生物学习的计算模型 神经网络第二次浪潮:联结主义connec ...

随机推荐

  1. [Err] 1067 - Invalid default value for 'xxxTime'

    下面是导入sql脚本的的局部脚本 `xxxTime` timestamp NOT NULL DEFAULT '0000-00-00 00:00:00', 发现是NO_ZERO_IN_DATE,NO_Z ...

  2. 关于 Android 中未公开的类(用@hide隐藏的类)

    关于 Android 中未公开的类(用@hide隐藏的类) 摘自:http://wangsheng2008love.blog.163.com/blog/static/78201689201142643 ...

  3. shell中把大写字母转换成小写字母

    shell中把大写字母转换成小写字母 参考:http://www.jb51.net/article/40257.htm echo "AABBCC" | tr "[:upp ...

  4. FPGA中的仿真

    在进行FPGA工程开发中,都会接触到仿真这个环节.FPGA开发一定要仿真,要养成仿真的习惯. 很多初学者或者学艺不精的工程师都比较排斥仿真. 但是,仿真真的很重要! 仿真可以让设计者能够很快知道模块输 ...

  5. Navicat设定mysql定时任务步骤示例

    怎样在Navicat中设置,是数据库按照记录中的日期更新状态字段 其实这个很常用,比如你网站里的某条记录的日期——比如说数据库中某条活动记录的审核日期字段已经过期,亦即当前时间已经超过审核日期,那么定 ...

  6. unittest框架+ HTMLTestRunner 出报告时,展示控制台信息 不同展示的参数写法 加verbosity

    加verbosity参数 没有加的时候展示: 参考: 来源:  https://www.cnblogs.com/tomweng/p/6609937.html 介绍: HTMLTestRunner 是 ...

  7. Cassandra 学习七 cassandra研究

    https://www.cnblogs.com/bonelee/p/6306079.html Allow filtering: 如果你的查询条件里,有一个是根据索引查询,那其它非索引非主键字段,可以通 ...

  8. 不同浏览器对于html5 audio标签和音频格式的兼容性

    音频格式 Chrome Firefox IE9 Opera Safari OGG 支持 支持 支持 支持 不支持 MP3 支持 不支持 支持 不支持 支持 WAV 不支持 支持 不支持 支持 不支持 ...

  9. 分布式队列 Celery

    详情参见: 分布式队列神器 Celery 用户指南(User Guide) 1) Celery-4.1 用户指南: Application(应用) 2) Celery-4.1 用户指南: Task(任 ...

  10. spring-boot restful put方式提交表单

    使用spring-boot 做接口,如果按restful的路由形式想使用put方式进行表单提交,第一个参数应该为文件参数,代码如下: @PutMapping("/http-put" ...