题目描述

任何大于 1 的自然数 n 都可以写成若干个大于等于 2 且小于等于 n 的质数之和表达式(包括只有一个数构成的和表达式的情况),并且可能有不止一种质数和的形式。例如,9 的质数和表达式就有四种本质不同的形式:

9 = 2 + 5 + 2 = 2 + 3 + 2 + 2 = 3 + 3 + 3 = 2 + 7 。

这里所谓两个本质相同的表达式是指可以通过交换其中一个表达式中参加和运算的各个数的位置而直接得到另一个表达式。

试编程求解自然数 n 可以写成多少种本质不同的质数和表达式。

输入输出格式

输入格式:

文件中的每一行存放一个自然数 n(2 < n < 200) 。

输出格式:

依次输出每一个自然数 n 的本质不同的质数和表达式的数目。

输入输出样例

输入样例#1:

2
200
输出样例#1:

1
9845164

Solution:

  AH省选的一道水题。

  先筛出$200$以内的素数,然后对于每次询问$n$,等价于求不超过$n$的素数中选一些加起来等于$n$的方案数,直接跑一遍完全背包,改成计数就好了,状态$f[i]$表示$i$用素数组成的方案数,初始$f[0]=1$,那么状态转移方程就显而易见:$f[j]=f[j-prime[i]]+f[j]$。  

代码:

#include<bits/stdc++.h>
#define il inline
#define ll long long
#define For(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(int (i)=(b);(i)>=(a);(i)--)
using namespace std;
int n,f[],prime[],cnt;
bool isprime[]; int main(){
ios::sync_with_stdio();
For(i,,){
if(!isprime[i]) prime[++cnt]=i;
for(int j=;j<=cnt&&prime[j]*i<=;j++){
isprime[prime[j]*i]=;
if(i%prime[j]==)break;
}
}
while(cin>>n){
memset(f,,sizeof(f));f[]=;
For(i,,cnt) For(j,prime[i],n) f[j]+=f[j-prime[i]];
cout<<f[n]<<endl;
}
return ;
}

P2563 [AHOI2001]质数和分解的更多相关文章

  1. 洛谷 P2563 [AHOI2001]质数和分解

    洛谷  P2563 [AHOI2001]质数和分解 题目描述 任何大于 1 的自然数 n 都可以写成若干个大于等于 2 且小于等于 n 的质数之和表达式(包括只有一个数构成的和表达式的情况),并且可能 ...

  2. 洛谷 P2563 [AHOI2001]质数和分解 题解

    P2563 [AHOI2001]质数和分解 题目描述 任何大于 1 的自然数 n 都可以写成若干个大于等于 2 且小于等于 n 的质数之和表达式(包括只有一个数构成的和表达式的情况),并且可能有不止一 ...

  3. 洛谷P2563 [AHOI2001]质数和分解

    题目描述 任何大于 1 的自然数 n 都可以写成若干个大于等于 2 且小于等于 n 的质数之和表达式(包括只有一个数构成的和表达式的情况),并且可能有不止一种质数和的形式.例如,9 的质数和表达式就有 ...

  4. [AHOI2001]质数和分解

    [AHOI2001]质数和分解 题目描述 任何大于 1 的自然数 n 都可以写成若干个大于等于 2 且小于等于 n 的质数之和表达式(包括只有一个数构成的和表达式的情况),并且可能有不止一种质数和的形 ...

  5. 洛谷 [AHOI2001]质数和分解

     题目描述 Description 任何大于 1 的自然数 n 都可以写成若干个大于等于 2 且小于等于 n 的质数之和表达式(包括只有一个数构成的和表达式的情况),并且可能有不止一种质数和的形式.例 ...

  6. 【Luogu P2563】【集训Day 4 动态规划】质数和分解

    题目链接:Luogu P2563 质数和分解(prime) [问题描述] 任何大于 1 的自然数 N,都可以写成若干个大于等于2且小于等于 N 的质数之和表达式(包括只有一个数构成的和表达式的情况), ...

  7. [Luogu P2563]质数和分解

    题目链接 话不多说,这是一道质数题+完全背包.先预处理筛出质数,直接背包就行. #include<iostream> #include<cstdio> #include< ...

  8. 背包DP 方案数

    题目 1 P1832 A+B Problem(再升级) 题面描述 给定一个正整数n,求将其分解成若干个素数之和的方案总数. 题解 我们可以考虑背包DP实现 背包DP方案数板子题 f[ i ] = f[ ...

  9. 【省选水题集Day1】一起来AK水题吧! 题目(更新到B)

    题解:http://www.cnblogs.com/ljc20020730/p/6937954.html 水题A: [AHOI2001]质数和分解 题目网址: https://www.luogu.or ...

随机推荐

  1. dom技术解析xml (php)

    1.xml实例 test.xml <?xml version="1.0" encoding="utf-8"?><!DOCTYPE 班级 SYS ...

  2. BigData--hadoop集群搭建之hbase安装

    之前在hadoop-2.7.3 基础上搭建hbase 详情请见:https://www.cnblogs.com/aronyao/p/hadoop.html 基础条件:先配置完成zookeeper 准备 ...

  3. QP之QEP原理

    1.QP简介: 量子平台(Quantum Platform, 简称QP)是一个用于实时嵌入式系统的软件框架,QP是轻量级的.开源的.基于层次式状态机的.事件驱动的平台. QP包括事件处理器(QEP). ...

  4. django模型的字段查询

    条件运算符 exact: 查判等 list=BookInfo.objects.filter(id__exact=1) 可简写为: list=BookInfo.objects.filter(id=1) ...

  5. POJ2553 汇点个数(强连通分量

    The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 12070   Accepted: ...

  6. sort函数

    做项目的时候,排序是一种经常要用到的操作.如果每次都自己写个冒泡之类的O(n^2)排序,不但程序容易超时,而且浪费宝贵的时间,还很有可能写错.STL里面有个sort函数,可以直接对数组排序,复杂度为n ...

  7. WPF中,如何将绑定源设置到单件实例

    原文:WPF中,如何将绑定源设置到单件实例  WPF中,如何将绑定源设置到单件实例                                       周银辉 大概两个月前,曾有位朋友问我:如 ...

  8. 初步学习pg_control文件之十

    接前文 初步学习pg_control文件之九 看下面这个 XLogRecPtr checkPoint; /* last check point record ptr */ 看看这个pointer究竟保 ...

  9. Mac OS下搭建Hadoop + Spark集群

    首先注意版本兼容问题!!!本文采用的是Scala 2.11.8 + Hadoop 2.7.5 + Spark 2.2.0 请在下载Spark时务必看清对应的Scala和Hadoop版本! 一.配置JD ...

  10. OrCAD生成网表

    1. 先选中.dsn设计文件 2. 按照默认设置,点击OK即可生成网表