【bzoj3000】Big Number 数论
题目描述
输入
有多组输入数据,每组输入数据各一行,每行两个数——N,K
输出
每行一个数为输出结果。
样例输入
2 5
2 10
10 10
100 200
样例输出
1
1
7
69
题解
数论
题目转化一下变为求$\lfloor\log_kn!\rfloor+1$,使用换底公式,问题转化为求$\log n$。
$n$有$2^31$之大,显然不能暴力去求。
这里需要用到Stirling公式:$n!\approx\sqrt{2\pi n}(\frac ne)^n$。这个公式在$n$较大时比较精确,因此可以直接套用;当$n$较小时精确度没有那么高,因此需要小范围暴力。
直接使用cmath中的函数对右半部分取对数即可(右半部分化简结果为$\frac 12\log 2\pi n$+n\log\frac ne),再除以$\log k$,下取整+1即为答案。
注意需要long long。
#include <cmath>
#include <cstdio>
const double pi = acos(-1) , e = exp(1);
int main()
{
int n , k , i;
while(~scanf("%d%d" , &n , &k))
{
if(n <= 100)
{
double ans = 0;
for(i = 1 ; i <= n ; i ++ ) ans += log(i);
printf("%d\n" , (int)floor(ans / log(k)) + 1);
}
else printf("%lld\n" , (long long)floor((log(2 * pi * n) / 2 + log(n / e) * n) / log(k)) + 1);
}
return 0;
}
【bzoj3000】Big Number 数论的更多相关文章
- bzoj3000 Big Number 数论,斯特林公式
Description 给你两个整数N和K,要求你输出N!的K进制的位数. Input 有多组输入数据,每组输入数据各一行,每行两个数——N,K Output 每行一个数为输出结果 Sample In ...
- Leetcode 263 Ugly Number 数论 类似质因数分解
Ugly Number的质因数仅为2,3,5 将输入的数分别除以2,3,5直到不能除,看是否为1,为1的是Ugly Number,其他则不是. class Solution { public: boo ...
- BZOJ3000 Big Number
由Stirling公式: $$n! \approx \sqrt{2 \pi n} (\frac{n}{e})^n$$ 故:$$\begin{align} ans &= log_k n! + 1 ...
- [POJ3696]The Luckiest number(数论)
题目:http://poj.org/problem?id=3696 题意:给你一个数字L,你要求出一个数N,使得N是L的倍数,且N的每位数都必须是8,输出N的位数(如果不存在输出0) 分析: 首先我们 ...
- Leetcode 9 Palindrome Number 数论
判断一个数是否是回文数 方法是将数回转,看回转的数和原数是否相同 class Solution { public: bool isPalindrome(int x) { ) return false; ...
- [BZOJ3000] Big Number (Stirling公式)
Description 给你两个整数N和K,要求你输出N!的K进制的位数. Input 有多组输入数据,每组输入数据各一行,每行两个数——N,K Output 每行一个数为输出结果. Sample I ...
- [BZOJ3000]Big Number(斯特林公式)
求n!在k进制下的位数,n<=1e18 斯特林公式:$n!\approx \sqrt{2\pi n}(\frac{n}{e})^n$ 在n很大的时候有较好的精度保证. $\log_{k}n!+1 ...
- ACM在线模板
转载自:https://blog.csdn.net/f_zyj/article/details/51594851 Index 分类细则 说起分类准则,我也是很头疼,毕竟对于很多算法,他并不是单调的,而 ...
- acm 模板
Index 分类细则 说起分类准则,我也是很头疼,毕竟对于很多算法,他并不是单调的,而是多方面的都挂得上钩.所以,从始至终,分类准则一直都是我很纠结的问题. 经过思量,首先分出比较主流的几类:Numb ...
随机推荐
- MySQL 清除表空间碎片
碎片产生的原因 (1)表的存储会出现碎片化,每当删除了一行内容,该段空间就会变为空白.被留空,而在一段时间内的大量删除操作,会使这种留空的空间变得比存储列表内容所使用的空间更大; (2)当执行插入操作 ...
- PHP一些常用魔术方法
魔术方法 调用方法 作用__set 有两个 ...
- 基于pyecharts的IT各行业薪资展示
我们的项目是一个信息采集系统,采集的是51job招聘网站,我爬取了Python,Java,C++,PHP还有北京各地区的职位数量,以及经验要求,和学历要求等等. 网页头; <!DOCTYPE h ...
- poj_2339
参考:https://blog.csdn.net/yzl_rex/article/details/7600906 https://blog.csdn.net/acm_JL/article/detail ...
- js数组长度
js数组长度,一般使用length 属性即可获取,但这个数组是个对象则只能使用以下方式 var t=typeof o; var length=0; if(t=='string'){ length=o. ...
- Oozie Coordinator job 之定时任务
使用 Coordinator job 可以执行定时任务和时间触发执行 需要注意的是 Oozie 默认使用的时区与中国时区不是一致的,需要进行一点修改 1.关于时区 a.修改 core-site.xml ...
- 【转】Git远程操作详解
Git是目前最流行的版本管理系统,学会Git几乎成了开发者的必备技能. Git有很多优势,其中之一就是远程操作非常简便.本文详细介绍5个Git命令,它们的概念和用法,理解了这些内容,你就会完全掌握Gi ...
- IdFTP中FEAT命令的问题
IdFTP控件很方便开发FTP客户端,用于传输文件.一次笔者的一个在阿里云的服务器突发故障,显示无法登陆FTP,而使用其他客户端(如FlashFxp)经过该项目设置,又可正常使用. 查询后说是FEAT ...
- CDH-5.9.2整合spark2
1.编写目的:由于cdh-5.9.2自带spark版本是spark1.6,现需要测试spark2新特性,需要整合spark2, 且spark1.x和spark2.x可以同时存在于cdh中,无需先删除s ...
- 微信H5支付 在其他浏览器调用微信支付
微信H5支付的相关资料不是很多.不过步骤上来说不是很复杂 比公众号支付简单很多. 先上官方文档吧 https://pay.weixin.qq.com/wiki/doc/api/H5.php?chapt ...