Celery笔记
异步任务神器 Celery 简明笔记
在程序的运行过程中,我们经常会碰到一些耗时耗资源的操作,为了避免它们阻塞主程序的运行,我们经常会采用多线程或异步任务。比如,在 Web 开发中,对新用户的注册,我们通常会给他发一封激活邮件,而发邮件是个 IO 阻塞式任务,如果直接把它放到应用当中,就需要等邮件发出去之后才能进行下一步操作,此时用户只能等待再等待。更好的方式是在业务逻辑中触发一个发邮件的异步任务,而主程序可以继续往下运行。
Celery 是一个强大的分布式任务队列,它可以让任务的执行完全脱离主程序,甚至可以被分配到其他主机上运行。我们通常使用它来实现异步任务(async task)和定时任务(crontab)。它的架构组成如下图:
可以看到,Celery 主要包含以下几个模块:
- 任务模块 Task包含异步任务和定时任务。其中,异步任务通常在业务逻辑中被触发并发往任务队列,而定时任务由 Celery Beat 进程周期性地将任务发往任务队列。
- 消息中间件 BrokerBroker,即为任务调度队列,接收任务生产者发来的消息(即任务),将任务存入队列。Celery 本身不提供队列服务,官方推荐使用 RabbitMQ 和 Redis 等。
- 任务执行单元 WorkerWorker 是执行任务的处理单元,它实时监控消息队列,获取队列中调度的任务,并执行它。
- 任务结果存储 BackendBackend 用于存储任务的执行结果,以供查询。同消息中间件一样,存储也可使用 RabbitMQ, Redis 和 MongoDB 等。
异步任务
使用 Celery 实现异步任务主要包含三个步骤:
- 创建一个 Celery 实例
- 启动 Celery Worker
- 应用程序调用异步任务
快速入门
为了简单起见,对于 Broker 和 Backend,这里都使用 redis。在运行下面的例子之前,请确保 redis 已正确安装,并开启 redis 服务,当然,celery 也是要安装的。可以使用下面的命令来安装 celery 及相关依赖:
Python
1
|
$ pip install 'celery[redis]'
|
创建 Celery 实例
将下面的代码保存为文件 tasks.py
:
Python
1
2
3
4
5
6
7
8
9
10
|
# -*- coding: utf-8 -*-
import time
from celery import Celery
broker = 'redis://127.0.0.1:6379'
backend = 'redis://127.0.0.1:6379/0'
app = Celery('my_task', broker=broker, backend=backend)
@app.task
def add(x, y):
time.sleep(5) # 模拟耗时操作
return x + y
|
上面的代码做了几件事:
- 创建了一个 Celery 实例 app,名称为
my_task
; - 指定消息中间件用 redis,URL 为
redis://127.0.0.1:6379
; - 指定存储用 redis,URL 为
redis://127.0.0.1:6379/0
; - 创建了一个 Celery 任务
add
,当函数被@app.task
装饰后,就成为可被 Celery 调度的任务;
启动 Celery Worker
在当前目录,使用如下方式启动 Celery Worker:
Python
1
|
$ celery worker -A tasks --loglevel=info
|
其中:
- 参数
-A
指定了 Celery 实例的位置,本例是在tasks.py
中,Celery 会自动在该文件中寻找 Celery 对象实例,当然,我们也可以自己指定,在本例,使用-A tasks.app
; - 参数
--loglevel
指定了日志级别,默认为 warning,也可以使用-l info
来表示;
在生产环境中,我们通常会使用 Supervisor 来控制 Celery Worker 进程。
启动成功后,控制台会显示如下输出:
调用任务
现在,我们可以在应用程序中使用 delay()
或 apply_async()
方法来调用任务。
在当前目录打开 Python 控制台,输入以下代码:
Python
1
2
3
|
>>> from tasks import add
>>> add.delay(2, 8)
<AsyncResult: 2272ddce-8be5-493f-b5ff-35a0d9fe600f>
|
在上面,我们从 tasks.py
文件中导入了 add
任务对象,然后使用 delay()
方法将任务发送到消息中间件(Broker),Celery Worker 进程监控到该任务后,就会进行执行。我们将窗口切换到 Worker 的启动窗口,会看到多了两条日志:
Python
1
2
|
[2016-12-10 12:00:50,376: INFO/MainProcess] Received task: tasks.add[2272ddce-8be5-493f-b5ff-35a0d9fe600f]
[2016-12-10 12:00:55,385: INFO/PoolWorker-4] Task tasks.add[2272ddce-8be5-493f-b5ff-35a0d9fe600f] succeeded in 5.00642602402s: 10
|
这说明任务已经被调度并执行成功。
另外,我们如果想获取执行后的结果,可以这样做:
Python
1
2
3
4
5
6
7
8
9
|
>>> result = add.delay(2, 6)
>>> result.ready() # 使用 ready() 判断任务是否执行完毕
False
>>> result.ready()
False
>>> result.ready()
True
>>> result.get() # 使用 get() 获取任务结果
8
|
在上面,我们是在 Python 的环境中调用任务。事实上,我们通常在应用程序中调用任务。比如,将下面的代码保存为 client.py
:
Python
1
2
3
4
5
|
# -*- coding: utf-8 -*-
from tasks import add
# 异步任务
add.delay(2, 8)
print 'hello world'
|
运行命令 $ python client.py
,可以看到,虽然任务函数 add
需要等待 5 秒才返回执行结果,但由于它是一个异步任务,不会阻塞当前的主程序,因此主程序会往下执行 print
语句,打印出结果。
使用配置
在上面的例子中,我们直接把 Broker 和 Backend 的配置写在了程序当中,更好的做法是将配置项统一写入到一个配置文件中,通常我们将该文件命名为 celeryconfig.py
。Celery 的配置比较多,可以在官方文档查询每个配置项的含义。
下面,我们再看一个例子。项目结构如下:
Python
1
2
3
4
5
6
7
|
celery_demo # 项目根目录
├── celery_app # 存放 celery 相关文件
│ ├── __init__.py
│ ├── celeryconfig.py # 配置文件
│ ├── task1.py # 任务文件 1
│ └── task2.py # 任务文件 2
└── client.py # 应用程序
|
__init__.py
代码如下:
Python
1
2
3
4
|
# -*- coding: utf-8 -*-
from celery import Celery
app = Celery('demo') # 创建 Celery 实例
app.config_from_object('celery_app.celeryconfig') # 通过 Celery 实例加载配置模块
|
celeryconfig.py
代码如下:
Python
1
2
3
4
5
6
7
8
|
BROKER_URL = 'redis://127.0.0.1:6379' # 指定 Broker
CELERY_RESULT_BACKEND = 'redis://127.0.0.1:6379/0' # 指定 Backend
CELERY_TIMEZONE='Asia/Shanghai' # 指定时区,默认是 UTC
# CELERY_TIMEZONE='UTC'
CELERY_IMPORTS = ( # 指定导入的任务模块
'celery_app.task1',
'celery_app.task2'
)
|
task1.py
代码如下:
Python
1
2
3
4
5
6
|
import time
from celery_app import app
@app.task
def add(x, y):
time.sleep(2)
return x + y
|
task2.py
代码如下:
Python
1
2
3
4
5
6
|
import time
from celery_app import app
@app.task
def multiply(x, y):
time.sleep(2)
return x * y
|
client.py
代码如下:
Python
1
2
3
4
5
6
|
# -*- coding: utf-8 -*-
from celery_app import task1
from celery_app import task2
task1.add.apply_async(args=[2, 8]) # 也可用 task1.add.delay(2, 8)
task2.multiply.apply_async(args=[3, 7]) # 也可用 task2.multiply.delay(3, 7)
print 'hello world'
|
现在,让我们启动 Celery Worker 进程,在项目的根目录下执行下面命令:
Python
1
|
celery_demo $ celery -A celery_app worker --loglevel=info
|
接着,运行 $ python client.py
,它会发送两个异步任务到 Broker,在 Worker 的窗口我们可以看到如下输出:
Python
1
2
3
4
|
[2016-12-10 13:51:58,939: INFO/MainProcess] Received task: celery_app.task1.add[9ccffad0-aca4-4875-84ce-0ccfce5a83aa]
[2016-12-10 13:51:58,941: INFO/MainProcess] Received task: celery_app.task2.multiply[64b1f889-c892-4333-bd1d-ac667e677a8a]
[2016-12-10 13:52:00,948: INFO/PoolWorker-3] Task celery_app.task1.add[9ccffad0-aca4-4875-84ce-0ccfce5a83aa] succeeded in 2.00600231002s: 10
[2016-12-10 13:52:00,949: INFO/PoolWorker-4] Task celery_app.task2.multiply[64b1f889-c892-4333-bd1d-ac667e677a8a] succeeded in 2.00601326401s: 21
|
delay 和 apply_async
在前面的例子中,我们使用 delay()
或 apply_async()
方法来调用任务。事实上,delay
方法封装了 apply_async
,如下:
Python
1
2
3
|
def delay(self, *partial_args, **partial_kwargs):
"""Shortcut to :meth:`apply_async` using star arguments."""
return self.apply_async(partial_args, partial_kwargs)
|
也就是说,delay
是使用 apply_async
的快捷方式。apply_async
支持更多的参数,它的一般形式如下:
Python
1
|
apply_async(args=(), kwargs={}, route_name=None, **options)
|
apply_async 常用的参数如下:
- countdown:指定多少秒后执行任务
Python
1task1.apply_async(args=(2, 3), countdown=5) # 5 秒后执行任务 - eta (estimated time of arrival):指定任务被调度的具体时间,参数类型是 datetime
Python
123from datetime import datetime, timedelta# 当前 UTC 时间再加 10 秒后执行任务task1.multiply.apply_async(args=[3, 7], eta=datetime.utcnow() + timedelta(seconds=10))
- xpires:任务过期时间,参数类型可以是 int,也可以是 datetime
Python
1
|
task1.multiply.apply_async(args=[3, 7], expires=10) # 10 秒后过期
|
更多的参数列表可以在官方文档中查看。
定时任务
Celery 除了可以执行异步任务,也支持执行周期性任务(Periodic Tasks),或者说定时任务。Celery Beat 进程通过读取配置文件的内容,周期性地将定时任务发往任务队列。
让我们看看例子,项目结构如下:
Python
1
2
3
4
5
6
|
celery_demo # 项目根目录
├── celery_app # 存放 celery 相关文件
├── __init__.py
├── celeryconfig.py # 配置文件
├── task1.py # 任务文件
└── task2.py # 任务文件
|
__init__.py
代码如下:
Python
1
2
3
4
|
# -*- coding: utf-8 -*-
from celery import Celery
app = Celery('demo')
app.config_from_object('celery_app.celeryconfig')
|
celeryconfig.py
代码如下:
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
# -*- coding: utf-8 -*-
from datetime import timedelta
from celery.schedules import crontab
# Broker and Backend
BROKER_URL = 'redis://127.0.0.1:6379'
CELERY_RESULT_BACKEND = 'redis://127.0.0.1:6379/0'
# Timezone
CELERY_TIMEZONE='Asia/Shanghai' # 指定时区,不指定默认为 'UTC'
# CELERY_TIMEZONE='UTC'
# import
CELERY_IMPORTS = (
'celery_app.task1',
'celery_app.task2'
)
# schedules
CELERYBEAT_SCHEDULE = {
'add-every-30-seconds': {
'task': 'celery_app.task1.add',
'schedule': timedelta(seconds=30), # 每 30 秒执行一次
'args': (5, 8) # 任务函数参数
},
'multiply-at-some-time': {
'task': 'celery_app.task2.multiply',
'schedule': crontab(hour=9, minute=50), # 每天早上 9 点 50 分执行一次
'args': (3, 7) # 任务函数参数
}
}
|
task1.py
代码如下:
Python
1
2
3
4
5
6
|
import time
from celery_app import app
@app.task
def add(x, y):
time.sleep(2)
return x + y
|
task2.py
代码如下:
Python
1
2
3
4
5
6
|
import time
from celery_app import app
@app.task
def multiply(x, y):
time.sleep(2)
return x * y
|
现在,让我们启动 Celery Worker 进程,在项目的根目录下执行下面命令:
Python
1
|
celery_demo $ celery -A celery_app worker --loglevel=info
|
接着,启动 Celery Beat 进程,定时将任务发送到 Broker,在项目根目录下执行下面命令:
Python
1
2
3
4
5
6
7
8
9
10
11
|
celery_demo $ celery beat -A celery_app
celery beat v4.0.1 (latentcall) is starting.
__ - ... __ - _
LocalTime -> 2016-12-11 09:48:16
Configuration ->
. broker -> redis://127.0.0.1:6379//
. loader -> celery.loaders.app.AppLoader
. scheduler -> celery.beat.PersistentScheduler
. db -> celerybeat-schedule
. logfile -> [stderr]@%WARNING
. maxinterval -> 5.00 minutes (300s)
|
之后,在 Worker 窗口我们可以看到,任务 task1
每 30 秒执行一次,而 task2
每天早上 9 点 50 分执行一次。
在上面,我们用两个命令启动了 Worker 进程和 Beat 进程,我们也可以将它们放在一个命令中:
Python
1
|
$ celery -B -A celery_app worker --loglevel=info
|
Celery 周期性任务也有多个配置项,可参考官方文档。
参考资料
Celery笔记的更多相关文章
- celery 笔记
参考:https://blog.csdn.net/tichimi3375/article/details/82415412 中文翻译:https://www.celerycn.io/ htt ...
- celery 学习笔记 01-介绍
celery 学习笔记 01-介绍 celery 是 python 中的常用的任务队列框架,经常用于异步调用.后台任务等工作.celery 本身以 python 写,但协议可在不同的语言中实现,其它语 ...
- 异步任务神器 Celery 简明笔记
转自:http://www.jianshu.com/p/1840035cb510 异步任务 异步任务是web开发中一个很常见的方法.对于一些耗时耗资源的操作,往往从主应用中隔离,通过异步的方式执行.简 ...
- Celery配置实践笔记
说点什么: 整理下工作中配置celery的一些实践,写在这里,一方面是备忘,另外一方面是整理成文档给其他同事使用. 演示用的项目,同时也发布在Github上: https://github.com/b ...
- Django商城项目笔记No.6用户部分-注册接口-短信验证码实现celery异步
Django商城项目笔记No.4用户部分-注册接口-短信验证码实现celery异步 接上一篇,如何解决前后端请求跨域问题? 首先想一下,为什么图片验证码请求的也是后端的api.meiduo.site: ...
- Celery 框架学习笔记
在学习Celery之前,我先简单的去了解了一下什么是生产者消费者模式. 生产者消费者模式 在实际的软件开发过程中,经常会碰到如下场景:某个模块负责产生数据,这些数据由另一个模块来负责处理(此处的模块是 ...
- python学习笔记3-celery分布式任务处理器
celery是用python写的一个异步的任务框架,功能非常强大,具体的说明可以查看官网,这里主要提供点demo让你迅速使用该框架 1.环境安装 默认安装好了redis pip install c ...
- Celery学习笔记
转载请注明出处:点我 我的第一篇博客!嘿嘿! 在公司实习,接触到的第一个项目就用到了Celery,之前是完全没有接触过Celery这玩意,然后花了点时间仔细的研究了下怎么用.在学习过程中也遇到了些问题 ...
- celery学习笔记2
1.定义: Celery是一个异步的任务队列(也叫做分布式任务队列) 2.工作结构 Celery分为3个部分 (1)worker部分负责任务的处理,即工作进程(我的理解工作进程就是你写的python代 ...
随机推荐
- Intent详解以及实例
Android中统一用Intent来封装程序的“调用意图“.不管程序想启动一个Activity,一个Servicer,还是一个BroadcastReceiver.使用Intent提供了一个统一的编程模 ...
- iOS 10 隐私权限设置
iOS 10 开始对隐私权限更加严格,如果你不设置就会直接崩溃,现在很多遇到崩溃问题了,一般解决办法都是在info.plist文件添加对应的Key-Value就可以了. 以上Value值,圈出的红线部 ...
- BZOJ1355:[Baltic2009]Radio Transmission
浅谈\(KMP\):https://www.cnblogs.com/AKMer/p/10438148.html 题目传送门:https://lydsy.com/JudgeOnline/problem. ...
- eclipse配置hadoop2.7.2开发环境并本地跑起来
先安装并启动hadoop,怎么弄见上文http://www.cnblogs.com/wuxun1997/p/6847950.html.这里说下怎么设置IDE来开发hadoop代码和调试.首先要确保你本 ...
- nodejs 中的 NODE_PATH
在使用 nodejs 开发中我们都免不了要去安装一些第三方模块. 那么你或多或少的遇到过以下一些问题 再继续阅读之前,我们先来弄清楚一个概念. npm install --global xxx 属于全 ...
- android签名生成和发布
首先,我们需要一个keystore,当然已经有了的话就不用这一步了:cmd下:进入到jdk的bin目录,这样的话,android.keystore文件就会生成在这个目录下,签名的时候我们需要这个文件C ...
- 【转】使用JMeter 完成常用的压力测试(三)
使用JMeter 完成常用的压力测试 发布时间: 2008-9-27 15:33 作者: 未知 来源: 网络转载 字体: 小 中 大 | 上一篇 下一篇 | 打印 | 我要投稿 ...
- PTA 是否同一棵二叉搜索树(25 分)
是否同一棵二叉搜索树(25 分) 给定一个插入序列就可以唯一确定一棵二叉搜索树.然而,一棵给定的二叉搜索树却可以由多种不同的插入序列得到.例如分别按照序列{2, 1, 3}和{2, 3, 1}插入初始 ...
- MySQL优化方法论
MySQL优化方法 主机 操作系统 数据库 应用 MySQL优化理论 吞吐率(Throughput) VS 延时(Latency) 吞吐率: 我们一般使用单位时间内服务器处理的请求数来描述其并发处理能 ...
- flask系列三之Jinja2模板
1.如何渲染模板 模板在‘templates’文件夹下(htnl页面) 从flask中导入render_template函数---渲染html模板 在视图函数中,使用render_template 函 ...