C语言面向对象编程(五):单链表实现(转)
这里实现的单链表,可以存储任意数据类型,支持增、删、改、查找、插入等基本操作。(本文提供的是完整代码,可能有些长。)
下面是头文件:
#ifndef SLIST_H
#define SLIST_H #ifdef __cplusplus
extern "C" {
#endif #define NODE_T(ptr, type) ((type*)ptr) struct slist_node {
struct slist_node * next;
}; typedef void (*list_op_free_node)(struct slist_node *node);
/*
* return 0 on hit key, else return none zero
*/
typedef int (*list_op_key_hit_test)(struct slist_node *node, void *key); struct single_list {
/* all the members must not be changed manually by callee */
struct slist_node * head;
struct slist_node * tail;
int size; /* length of the list, do not change it manually*/ /* free method to delete the node
*/
void (*free_node)(struct slist_node *node);
/*
* should be set by callee, used to locate node by key(*_by_key() method)
* return 0 on hit key, else return none zero
*/
int (*key_hit_test)(struct slist_node *node, void *key); struct single_list *(*add)(struct single_list * list, struct slist_node * node);
struct single_list *(*insert)(struct single_list * list, int pos, struct slist_node *node);
/* NOTE: the original node at the pos will be freed by free_node */
struct single_list *(*replace)(struct single_list *list, int pos, struct slist_node *node);
struct slist_node *(*find_by_key)(struct single_list *, void * key);
struct slist_node *(*first)(struct single_list* list);
struct slist_node *(*last)(struct single_list* list);
struct slist_node *(*at)(struct single_list * list, int pos);
struct slist_node *(*take_at)(struct single_list * list, int pos);
struct slist_node *(*take_by_key)(struct single_list * list, void *key);
struct single_list *(*remove)(struct single_list * list, struct slist_node * node);
struct single_list *(*remove_at)(struct single_list *list, int pos);
struct single_list *(*remove_by_key)(struct single_list *list, void *key);
int (*length)(struct single_list * list);
void (*clear)(struct single_list * list);
void (*deletor)(struct single_list *list);
}; struct single_list * new_single_list(list_op_free_node op_free, list_op_key_hit_test op_cmp); #ifdef __cplusplus
}
#endif #endif // SLIST_H
struct single_list 这个类,遵循我们前面介绍的基本原则,不再一一细说。有几点需要提一下:
- 我们定义了 slist_node 作为链表节点的基类,用户自定义的节点,都必须从 slist_node 继承
- 为了支持节点( node )的释放,我们引入一个回调函数 list_op_free_node ,这个回调需要在创建链表时传入
- 为了支持查找,引入另外一个回调函数 list_op_key_hit_test
好了,下面看实现文件:
#include "slist.h"
#include <malloc.h> static struct single_list * _add_node(struct single_list *list, struct slist_node *node)
{ if(list->tail)
{
list->tail->next = node;
node->next = ;
list->tail = node;
list->size++;
}
else
{
list->head = node;
list->tail = node;
node->next = ;
list->size = ;
} return list;
} static struct single_list * _insert_node(struct single_list * list, int pos, struct slist_node *node)
{
if(pos < list->size)
{
int i = ;
struct slist_node * p = list->head;
struct slist_node * prev = list->head;
for(; i < pos; i++)
{
prev = p;
p = p->next;
}
if(p == list->head)
{
/* insert at head */
node->next = list->head;
list->head = node;
}
else
{
prev->next = node;
node->next = p;
} if(node->next == ) list->tail = node;
list->size++;
}
else
{
list->add(list, node);
} return list;
} static struct single_list * _replace(struct single_list * list, int pos, struct slist_node *node)
{
if(pos < list->size)
{
int i = ;
struct slist_node * p = list->head;
struct slist_node * prev = list->head;
for(; i < pos; i++)
{
prev = p;
p = p->next;
}
if(p == list->head)
{
/* replace at head */
node->next = list->head->next;
list->head = node;
}
else
{
prev->next = node;
node->next = p->next;
} if(node->next == ) list->tail = node; if(list->free_node) list->free_node(p);
else free(p);
} return list;
} static struct slist_node * _find_by_key(struct single_list *list, void * key)
{
if(list->key_hit_test)
{
struct slist_node * p = list->head;
while(p)
{
if(list->key_hit_test(p, key) == ) return p;
p = p->next;
}
}
return ;
} static struct slist_node *_first_of(struct single_list* list)
{
return list->head;
} static struct slist_node *_last_of(struct single_list* list)
{
return list->tail;
} static struct slist_node *_node_at(struct single_list * list, int pos)
{
if(pos < list->size)
{
int i = ;
struct slist_node * p = list->head;
for(; i < pos; i++)
{
p = p->next;
}
return p;
} return ;
} static struct slist_node * _take_at(struct single_list * list, int pos)
{
if(pos < list->size)
{
int i = ;
struct slist_node * p = list->head;
struct slist_node * prev = p;
for(; i < pos ; i++)
{
prev = p;
p = p->next;
}
if(p == list->head)
{
list->head = p->next;
if(list->head == ) list->tail = ;
}
else if(p == list->tail)
{
list->tail = prev;
prev->next = ;
}
else
{
prev->next = p->next;
} list->size--; p->next = ;
return p;
} return ;
} static struct slist_node * _take_by_key(struct single_list * list, void *key)
{
if(list->key_hit_test)
{
struct slist_node * p = list->head;
struct slist_node * prev = p;
while(p)
{
if(list->key_hit_test(p, key) == ) break;
prev = p;
p = p->next;
} if(p)
{
if(p == list->head)
{
list->head = p->next;
if(list->head == ) list->tail = ;
}
else if(p == list->tail)
{
list->tail = prev;
prev->next = ;
}
else
{
prev->next = p->next;
} list->size--; p->next = ;
return p;
}
}
return ;
} static struct single_list *_remove_node(struct single_list * list, struct slist_node * node)
{
struct slist_node * p = list->head;
struct slist_node * prev = p;
while(p)
{
if(p == node) break;
prev = p;
p = p->next;
} if(p)
{
if(p == list->head)
{
list->head = list->head->next;
if(list->head == ) list->tail = ;
}
else if(p == list->tail)
{
prev->next = ;
list->tail = prev;
}
else
{
prev->next = p->next;
} if(list->free_node) list->free_node(p);
else free(p); list->size--;
}
return list;
} static struct single_list *_remove_at(struct single_list *list, int pos)
{
if(pos < list->size)
{
int i = ;
struct slist_node * p = list->head;
struct slist_node * prev = p;
for(; i < pos ; i++)
{
prev = p;
p = p->next;
}
if(p == list->head)
{
list->head = p->next;
if(list->head == ) list->tail = ;
}
else if(p == list->tail)
{
list->tail = prev;
prev->next = ;
}
else
{
prev->next = p->next;
} if(list->free_node) list->free_node(p);
else free(p); list->size--;
} return list;
} static struct single_list *_remove_by_key(struct single_list *list, void *key)
{
if(list->key_hit_test)
{
struct slist_node * p = list->head;
struct slist_node * prev = p;
while(p)
{
if(list->key_hit_test(p, key) == ) break;
prev = p;
p = p->next;
} if(p)
{
if(p == list->head)
{
list->head = list->head->next;
if(list->head == ) list->tail = ;
}
else if(p == list->tail)
{
prev->next = ;
list->tail = prev;
}
else
{
prev->next = p->next;
} if(list->free_node) list->free_node(p);
else free(p); list->size--;
}
} return list;
} static int _length_of(struct single_list * list)
{
return list->size;
} static void _clear_list(struct single_list * list)
{
struct slist_node * p = list->head;
struct slist_node * p2;
while(p)
{
p2 = p;
p = p->next; if(list->free_node) list->free_node(p2);
else free(p2);
} list->head = ;
list->tail = ;
list->size = ;
} static void _delete_single_list(struct single_list *list)
{
list->clear(list);
free(list);
} struct single_list * new_single_list(list_op_free_node op_free, list_op_key_hit_test op_cmp)
{
struct single_list *list = (struct single_list *)malloc(sizeof(struct single_list));
list->head = ;
list->tail = ;
list->size = ;
list->free_node = op_free;
list->key_hit_test = op_cmp; list->add = _add_node;
list->insert = _insert_node;
list->replace = _replace;
list->find_by_key = _find_by_key;
list->first = _first_of;
list->last = _last_of;
list->at = _node_at;
list->take_at = _take_at;
list->take_by_key = _take_by_key;
list->remove = _remove_node;
list->remove_at = _remove_at;
list->remove_by_key = _remove_by_key;
list->length = _length_of;
list->clear = _clear_list;
list->deletor = _delete_single_list; return list;
}
上面的代码就不一一细说了,下面是测试代码:
/* call 1 or N arguments function of struct */
#define ST_CALL(THIS,func,args...) ((THIS)->func(THIS,args)) /* call none-arguments function of struct */
#define ST_CALL_0(THIS,func) ((THIS)->func(THIS)) struct int_node {
struct slist_node node;
int id;
}; struct string_node {
struct slist_node node;
char name[];
}; static int int_free_flag = ;
static void _int_child_free(struct slist_node *node)
{
free(node);
if(!int_free_flag)
{
int_free_flag = ;
printf("int node free\n");
}
} static int _int_slist_hittest(struct slist_node * node, void *key)
{
struct int_node * inode = NODE_T(node, struct int_node);
int ikey = (int)key;
return (inode->id == ikey ? : );
} static int string_free_flag = ;
static void _string_child_free(struct slist_node *node)
{
free(node);
if(!string_free_flag)
{
string_free_flag = ;
printf("string node free\n");
}
} static int _string_slist_hittest(struct slist_node * node, void *key)
{
struct string_node * sn = (struct string_node*)node;
return strcmp(sn->name, (char*)key);
} void int_slist_test()
{
struct single_list * list = new_single_list(_int_child_free, _int_slist_hittest);
struct int_node * node = ;
struct slist_node * bn = ;
int i = ; printf("create list && nodes:\n");
for(; i < ; i++)
{
node = (struct int_node*)malloc(sizeof(struct int_node));
node->id = i;
if(i%)
{
list->add(list, node);
}
else
{
list->insert(list, , node);
}
}
printf("create 100 nodes end\n----\n");
printf("first is : %d, last is: %d\n----\n",
NODE_T( ST_CALL_0(list, first), struct int_node )->id,
NODE_T( ST_CALL_0(list, last ), struct int_node )->id); assert(list->size == ); printf("list traverse:\n");
for(i = ; i < ; i++)
{
if(i% == ) printf("\n");
bn = list->at(list, i);
node = NODE_T(bn, struct int_node);
printf(" %d", node->id);
}
printf("\n-----\n"); printf("find by key test, key=42:\n");
bn = list->find_by_key(list, (void*));
assert(bn != );
node = NODE_T(bn, struct int_node);
printf("find node(key=42), %d\n------\n", node->id); printf("remove node test, remove the 10th node:\n");
bn = list->at(list, );
node = NODE_T(bn, struct int_node);
printf(" node 10 is: %d\n", node->id);
printf(" now remove node 10\n");
list->remove_at(list, );
printf(" node 10 was removed, check node 10 again:\n");
bn = list->at(list, );
node = NODE_T(bn, struct int_node);
printf(" now node 10 is: %d\n------\n", node->id); printf("replace test, replace node 12 with id 1200:\n");
bn = list->at(list, );
node = NODE_T(bn, struct int_node);
printf(" now node 12 is : %d\n", node->id);
node = (struct int_node*)malloc(sizeof(struct int_node));
node->id = ;
list->replace(list, , node);
bn = list->at(list, );
node = NODE_T(bn, struct int_node);
printf(" replaced, now node 12 is : %d\n----\n", node->id); printf("test remove:\n");
ST_CALL(list, remove, bn);
bn = ST_CALL(list, find_by_key, (void*));
assert(bn == );
printf("test remove ok\n----\n");
printf("test remove_by_key(90):\n");
ST_CALL(list, remove_by_key, (void*));
bn = ST_CALL(list, find_by_key, (void*));
assert(bn == );
printf("test remove_by_key(90) end\n----\n");
printf("test take_at(80):\n");
bn = ST_CALL(list, take_at, );
printf(" node 80 is: %d\n", NODE_T(bn, struct int_node)->id);
free(bn);
printf("test take_at(80) end\n"); int_free_flag = ;
printf("delete list && nodes:\n");
list->deletor(list);
printf("delete list && nodes end\n");
printf("\n test add/insert/remove/delete/find_by_key/replace...\n");
} void string_slist_test()
{
struct single_list * list = new_single_list(_string_child_free, _string_slist_hittest);
} void slist_test()
{
int_slist_test();
string_slist_test();
}
测试代码里主要演示了:
- 自定义链表节点类型
- 定义释放回调
- 定义用于查找的 hit test 回调
- 如何创建链表
- 如何使用( add 、remove 、 take 、find 、 insert 等)
相信到这里,单链表的使用已经不成问题了。
以单链表为基础,可以进一步实现很多数据结构,比如树(兄弟孩子表示法),比如 key-value 链表等等。接下来根据例子的需要,会择机进行展示。
转自:http://blog.csdn.net/foruok/article/details/18594177
C语言面向对象编程(五):单链表实现(转)的更多相关文章
- C++学习(三十五)(C语言部分)之 单链表
单链表 就好比火车 火车头-->链表头部火车尾-->链表尾部火车厢-->链表的节点火车厢连接的部分-->指针火车中的内容-->链表节点的的数据链表节点包含数据域和指针域数 ...
- 云风:我所偏爱的C语言面向对象编程范式
面向对象编程不是银弹.大部分场合,我对面向对象的使用非常谨慎,能不用则不用.相关的讨论就不展开了. 但是,某些场合下,采用面向对象的确是比较好的方案.比如 UI 框架,又比如 3d 渲染引擎中的场景管 ...
- R语言面向对象编程:S3和R6
一.基于S3的面向对象编程 基于S3的面向对象编程是一种基于泛型函数(generic function)的实现方式. 1.S3函数的创建 S3对象组成:generic(generic FUN)+met ...
- C语言版本:循环单链表的实现
SClist.h #ifndef __SCLIST_H__ #define __SCLIST_H__ #include<cstdio> #include<malloc.h> # ...
- c语言有头循环单链表
/************************************************************************* > File Name: singleLin ...
- c语言实现--带头结点单链表操作
可能是顺序表研究的细致了一点,单链表操作一下子就实现了.这里先实现带头结点的单链表操作. 大概有以下知识点. 1;结点:结点就是单链表中研究的数据元素,结点中存储数据的部分称为数据域,存储直接后继地址 ...
- 零基础入门该如何实现C 语言面向对象编程(很有帮助)
零基础如果更快更好的入门C语言,如何在枯燥的学习中找到属于自己的兴趣,如果把学习当成一种事务性的那以后的学习将会很难有更深入的进步,如果带着乐趣来完成学习那将越学越有意思这样才会让你有想要更深入学习的 ...
- c语言实现两个单链表的交叉合并
#include<stdio.h> #include<stdlib.h> #include<iostream> using namespace std; struc ...
- go语言实现单链表
线性表包含两种存储方法:顺序存储结构和链式存储结构,其中顺序表的缺点是不便插入与删除数据. 单链表:每个结点包含两部分:数据域+指针域,上一个结点的指针指向下一结点,依次相连,形成链表.特别注意的是每 ...
随机推荐
- mysql主从怎么样使主为innodb辅为myisam
MySQL主从复制(linux主+windows从) http://blog.csdn.net/qq_20032995/article/details/54380290 mysql主从怎么样使主为in ...
- ModelMap和ModelAndView区别
首先介绍ModelMap和ModelAndView的作用 ModelMap ModelMap对象主要用于传递控制方法处理数据到结果页面,也就是说我们把结果页面上需要的数据放到ModelMap对象中即可 ...
- AC日记——Is it rated? codeforces 807a
Is it rated? 思路: 水题: 代码: #include <cstdio> #include <cstring> using namespace std; ],b[] ...
- 微信商户现金红包api php
微信开发文档: 现金红包:https://pay.weixin.qq.com/wiki/doc/api/tools/cash_coupon.php?chapter=13_5 裂变红包:https:// ...
- HDU 2044 一只小蜜蜂(递归)
一只小蜜蜂... Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Su ...
- ret2dir:Rethinking Kernel Isolation(翻译)
前一段时间在网上找ret2dir的资料,一直没找到比较系统的介绍,于是干脆把这篇经典的论文翻译了,当然,第一次翻译(而且还这么长),很多词汇不知道到底该怎么翻译,而且最近事情也比较多, 翻译得挺烂的, ...
- 29、Django实战第29天:修改密码和头像
修改头像 1.上传头像,我们需要的对它做一个forms验证,编辑users.forms.py ... from .models import UserProfile class UploadImage ...
- [POJ 1739] Tony's Tour
Link: POJ 1739 传送门 Solution: 这题除了一开始的预处理,基本上就是插头$dp$的模板题了 由于插头$dp$求的是$Hamilton$回路,而此题有起点和终点的限制 于是可以构 ...
- Linux下提示命令找不到:bash:command not found
Linux下输入某些命令时会提示:bash:command not found. 首先,查看$PATH中是否包含了这些命令. $PATH:决定了shell到哪些目录中去寻找命令或程序,PATH值是一系 ...
- 英尺和米之间的转换 Exercise06_09
/** * @author 冰樱梦 * 时间:2018年下半年 * 题目:英尺和米之间的转换 * */ public class Exercise06_09 { public static void ...