一、求解模线性方程

由ax=b(mod n)

可知ax = ny + b

就相当于ax + ny = b

由扩展欧几里得算法可知有解条件为gcd(a, n)整除d

可以直接套用扩展欧几里得算法

最终由d个不同解时在模n下有d个不同的数字

二、中国剩余定理

证明可看:https://www.cnblogs.com/MashiroSky/p/5918158.html

ll extgcd(ll a, ll b, ll& x, ll& y)
//求解ax+by=gcd(a, b)
//返回值为gcd(a, b)
{
ll d = a;
if(b)
{
d = extgcd(b, a % b, y, x);
y -= (a / b) * x;
}
else x = , y = ;
return d;
}
ll solve(ll a[], ll m[], int n)//a数组是余数,m数组是两两互质的数字
{
ll M = , ans = ;
for(int i = ; i < n; i++)M *= m[i];
//cout<<M<<endl;
for(int i = ; i < n; i++)
{
ll mi = M / m[i], x, y;
extgcd(mi, m[i], x, y);
//求出mi模上m[i]的逆元x mi * x + m[i] * y = gcd(mi, m[i]) = 1(两两互质)
ans = ans + ((a[i] % M) * (mi % M) % M) * (x % M) % M;
ans = (ans % M + M) % M;
}
return ans;
}

三、中国剩余定理扩展---求解一般的模线性方程组

  普通的中国剩余定理要求所有的互素,那么如果不互素呢,怎么求解同余方程组?

  这种情况就采用两两合并的思想,假设要合并如下两个方程:

  那么得到:

  我们需要求出一个最小的xx使它满足:

在代码中,每次求出m0 * x + m[i] * y = a[i] - a0的解x的时候,对x模上m[i],这是为了保证x绝对值较小,防止之后的乘法溢出,

x的通解就是x + k * m[i] / gcd(m0, m[i]),此处模上m[i] / gcd(m0, m[i])更好

 ll extgcd(ll a, ll b, ll& x, ll& y)
//求解ax+by=gcd(a, b)
//返回值为gcd(a, b)
{
ll d = a;
if(b)
{
d = extgcd(b, a % b, y, x);
y -= (a / b) * x;
}
else x = , y = ;
return d;
}
ll solve(ll a[], ll m[], int n)//a数组是余数,m数组是除数
{
ll m0 = m[], a0 = a[];
for(int i = ; i < n; i++)
{
ll x, y;
ll g = extgcd(m0, m[i], x, y);//求出m0 * x + m[i] * y = gcd(x, y)
if((a[i] - a0) % g)return -;
x = x * (a[i] - a0) / g % m[i];
//求出m0 * x + m[i] * y = a[i] - a0的解x
//此处模上m[i]是为了取绝对值最小的一个x,因为x的通解就是x+k*m[i]
ll K = x * m0 + a0; //代回原式,求出最大的K
m0 = m0 / g * m[i]; //m0更新为m0和m[i]的lcm
a0 = K; //a0更新为K
a0 = ((a0 % m0) + m0) % m0;
}
return a0;
}

模线性方程&&中国剩余定理及拓展的更多相关文章

  1. 中国剩余定理及其拓展 CRT&EXGCD

    中国剩余定理,又叫孙子定理. 作为一个梗广为流传.其实它的学名叫中国单身狗定理. 中国剩余定理 中国剩余定理是来干什么用的呢? 其实就是用来解同余方程组的.那么什么又是同余方程组呢. 顾名思义就是n个 ...

  2. BZOJ-1951 古代猪文 (组合数取模Lucas+中国剩余定理+拓展欧几里得+快速幂)

    数论神题了吧算是 1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec Memory Limit: 64 MB Submit: 1573 Solved: 650 [Submit ...

  3. E - Two Arithmetic Progressions(CodeForces - 710D)(拓展中国剩余定理)

    You are given two arithmetic progressions: a1k + b1 and a2l + b2. Find the number of integers x such ...

  4. 礼物(中国剩余定理+拓展gcd求逆元+分治=拓展Lucus)

    礼物 题意: 求\[C(n,m)\ \%\ p\] \(n,m,p\le 10^9\),且若\(p=\prod_{i=1}^{k}{p_i}^{c_i}\),则\(\forall i\in [1..k ...

  5. 拓展中国剩余定理(exCRT)摘要

    清除一个误区 虽然中国剩余定理和拓展中国剩余定理只差两个字,但他俩的解法相差十万八千里,所以会不会CRT无所谓 用途 求类似$$\begin{cases}x \equiv b_{1}\pmod{a_{ ...

  6. 中国剩余定理(CRT)及其拓展(ExCRT)

    中国剩余定理 CRT 推导 给定\(n\)个同余方程 \[ \left\{ \begin{aligned} x &\equiv a_1 \pmod{m_1} \\ x &\equiv ...

  7. [BZOJ 3129] [Sdoi2013] 方程 【容斥+组合数取模+中国剩余定理】

    题目链接:BZOJ - 3129 题目分析 使用隔板法的思想,如果没有任何限制条件,那么方案数就是 C(m - 1, n - 1). 如果有一个限制条件是 xi >= Ai ,那么我们就可以将 ...

  8. 拓展中国剩余定理(ex_crt)

    一般来讲,crt(中国剩余定理)比较常见,而ex_crt(拓展中国剩余定理)不是很常用 但是noi 2018偏偏考了这么个诡异的东西... 所以这里写一个ex_crt模板 模型: 求一个x满足上述方程 ...

  9. POJ.1006 Biorhythms (拓展欧几里得+中国剩余定理)

    POJ.1006 Biorhythms (拓展欧几里得+中国剩余定理) 题意分析 不妨设日期为x,根据题意可以列出日期上的方程: 化简可得: 根据中国剩余定理求解即可. 代码总览 #include & ...

随机推荐

  1. redis源码搭建以及配置主从服务器

    2018-10-25 关闭防火墙: systemctl stop firewalld.service #停止firewall systemctl disable firewalld.service # ...

  2. CSS媒体查询及其使用

    1.什么是媒体查询 媒体查询可以让我们根据设备显示器的特性(如视口宽度.屏幕比例.设备方向:横向或纵向)为其设定CSS样式,媒体查询由媒体类型和一个或多个检测媒体特性的条件表达式组成.媒体查询中可用于 ...

  3. [转]创建节约内存的JavaBean

    转自:创建节约内存的JavaBean 如果编写节约内存的java对象 编写Java代码的时候,大多数情况下,我们很少关注一个Java对象究竟有多大(占据多少内存),更多的是关注业务与逻辑.但是殊不知, ...

  4. 设计模式学习总结(十)责任链模式(Chain Of Responsibility)

    责任链主要指通过一连串的操作来实现某项功能或者在处理相关的业务时,对于自己的业务则进行处理,反之,对于不属于自己的业务,则进行下发!   一.示例展示: 以下例子主要通过对煤矿对井下警告信息的处理来进 ...

  5. shell 命令之bind,enable,ulimit

    1.bind 在shell中,内建(builtin)命令bind,格式如下: bind [-m keymap] [-lpsvPSVX] bind [-m keymap] [-q function] [ ...

  6. vue嵌套路由 && 404重定向

    第一部分: vue嵌套路由 嵌套路由是什么? 嵌套路由就是在一个被路由过来的页面下可以继续使用路由,嵌套也就是路由中的路由的意思.  比如在vue中,我们如果不使用嵌套路由,那么只有一个<rou ...

  7. [Matlab] fprintf

    %s format as a string%d format with no fractional part (integer format)%f format as a oating-point v ...

  8. FZU 1921——栀子花开——————【线段树单点更新】

    栀子花开 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status  ...

  9. (三)HTML中的列表标签、框架集及表单标签

    一.HTML的列表标签 在网页中,经常可以看到,有的内容排列如同word里面的项目编号,这就是HTML的无序排列和有序排列起到的作用.. HTML之无序排列:<ul></ul> ...

  10. OLEDB 简单数据查找定位和错误处理

    在数据库查询中,我们主要使用的SQL语句,但是之前也说过,SQL语句需要经历解释执行的步骤,这样就会拖慢程序的运行速度,针对一些具体的简单查询,比如根据用户ID从用户表中查询用户具体信息,像这样的简单 ...