nyoj 349&Poj 1094 Sorting It All Out——————【拓扑应用】
Sorting It All Out
- 描述
-
An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.
- 输入
- Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will be the first n characters of the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character "<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.
- 输出
- For each problem instance, output consists of one line. This line should be one of the following three:
Sorted sequence determined after xxx relations: yyy...y.
Sorted sequence cannot be determined.
Inconsistency found after xxx relations.where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence.
- 样例输入
-
4 6
A<B
A<C
B<C
C<D
B<D
A<B
3 2
A<B
B<A
26 1
A<Z
0 0 - 样例输出
-
Sorted sequence determined after 4 relations: ABCD.
Inconsistency found after 2 relations.
Sorted sequence cannot be determined. 题目大意:给你n个点,给你m条边代表大小关系。问你在第几条边加入后有矛盾(有环)或能确定关系,或者不能确定关系。
解题思路:首先每次加入一条边,就用floyd传递闭包,之后再判断是否形成环。如果没有环,就判断是否能确定唯一大小关系,这里有一个重要的判断条件即如果所有的结点的度等于n-1,则拓扑排序记录路径。#include<bits/stdc++.h>
using namespace std;
int Map[50][50],indegree[50],outdegree[50];
char S_ord[50];
bool floyd(int n){
for(int k=0;k<n;k++){ //传递闭包
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
if(Map[i][k]&&Map[k][j])
Map[i][j]=1;
}
}
}
for(int i=0;i<n;i++) //判断是否形成环
if(Map[i][i])
return 1;
return 0;
}
bool calcu_is_ord(int n){ //计算目前是否有序
memset(indegree,0,sizeof(indegree));
memset(outdegree,0,sizeof(outdegree));
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
if(Map[i][j]){
indegree[j]++;
outdegree[i]++;
}
}
}
for(int i=0;i<n;i++){
if(indegree[i]+outdegree[i]!=n-1){
/*如果所有结点都满足入度加出度等于结点总数减一,说明已经有序。因为如果有序,必然
会有入度为0~n-1,相应的出度为n-1~0。所以只要所有的结点度都为n-1,则说明已经有序。
*/
return 0;
}
}
return 1;
}
void topo_sort(int n){ //拓扑排序求大小顺序
int que_[50],vis[50],top=0,cnt=0,u;
for(int i=0;i<n;i++){
if(indegree[i]==0){
que_[++top]=i;
}
}
memset(vis,0,sizeof(vis));
while(top){
u=que_[top--];
vis[u]=1;
S_ord[cnt++]=u+'A';
for(int i=0;i<n;i++){
if(!vis[i]&&Map[u][i]){
indegree[i]--;
}
if(!vis[i]&&indegree[i]==0){
que_[++top]=i;
}
}
}
S_ord[cnt++]='\0';
}
int main(){
int n,m;
char str[10];
while(scanf("%d%d",&n,&m)!=EOF&&(n+m)){
memset(Map,0,sizeof(Map));
int flag_cir=0,flag_ord=0; //记录在第几组关系输入时形成环或有序
for(int i=1;i<=m;i++){
scanf("%s",str);
Map[str[0]-'A'][str[2]-'A']=1;
if(flag_cir||flag_ord)
continue;
if(floyd(n)){ flag_cir=i;continue;}
else if(calcu_is_ord(n)){topo_sort(n);flag_ord=i;continue;}
}
if(flag_cir)
printf("Inconsistency found after %d relations.\n",flag_cir);
else if(flag_ord){
printf("Sorted sequence determined after %d relations: %s.\n",flag_ord,S_ord);
}else{
printf("Sorted sequence cannot be determined.\n");
}
}
return 0;
}
nyoj 349&Poj 1094 Sorting It All Out——————【拓扑应用】的更多相关文章
- ACM: poj 1094 Sorting It All Out - 拓扑排序
poj 1094 Sorting It All Out Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%lld & ...
- poj 1094 Sorting It All Out (拓扑排序)
http://poj.org/problem?id=1094 Sorting It All Out Time Limit: 1000MS Memory Limit: 10000K Total Su ...
- nyoj 349 (poj 1094) (拓扑排序)
Sorting It All Out 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 An ascending sorted sequence of distinct ...
- POJ 1094 Sorting It All Out 拓扑排序 难度:0
http://poj.org/problem?id=1094 #include <cstdio> #include <cstring> #include <vector& ...
- [ACM_模拟] POJ 1094 Sorting It All Out (拓扑排序+Floyd算法 判断关系是否矛盾或统一)
Description An ascending sorted sequence of distinct values is one in which some form of a less-than ...
- POJ 1094 Sorting It All Out (拓扑排序) - from lanshui_Yang
Description An ascending sorted sequence of distinct values is one in which some form of a less-than ...
- poj 1094 Sorting It All Out_拓扑排序
题意:是否唯一确定顺序,根据情况输出 #include <iostream> #include<cstdio> #include<cstring> #include ...
- poj 1094 Sorting It All Out(nyoj 349)
点击打开链接 Sorting It All Out Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 24544 Accep ...
- poj 1094 Sorting It All Out(图论)
http://poj.org/problem?id=1094 这一题,看了个大牛的解题报告,思路变得非常的清晰: 1,先利用floyd_warshall算法求出图的传递闭包 2,再判断是不是存在唯一的 ...
随机推荐
- golang subprocess tests
golang Subprocess tests Sometimes you need to test the behavior of a process, not just a function. f ...
- 《Servlet和jsp学习指南》 笔记2
chapter 13 请求和响应的装饰 初步了解Decorator模式: 在不修改一个对象的类的源码的情况下,装饰这个对象的行为. chapter 14 异步处理 异步Servlet和Filter,只 ...
- 使用jmeter做简单的场景设计
使用jmeter做简单的场景设计 Jmeter: Apache JMeter是Apache组织开发的基于Java的压力测试工具.用于对软件做压力测试.我之所以选择它,最重要的一点就是----开源 个人 ...
- ajax标准格式
jquery向服务器发送一个ajax请求后,可以返回多种类型的数据格式,包括:html,xml,json,text等. $.ajax({ url:"http://www.test.co ...
- 老程序员解Bug的通用套路
千万不要当程序员面说有bug 对于新手程序员而言,在复杂代码中找BUG是一个难点.下面我们总结下老从程序员解Bug的通用套路,希望对大家有帮助. 1.IDE调试 根据项目特点和语言特点选择一个最合适的 ...
- loj#6436. 「PKUSC2018」神仙的游戏(NTT)
题面 传送门 题解 一旦字符串踏上了通配符的不归路,它就永远脱离了温暖的字符串大家庭的怀抱 用人话说就是和通配符扯上关系的字符串就不是个正常的字符串了比如说这个 让我们仔细想想,如果一个长度为\(le ...
- 【Es】jest操作elasticsearch
https://blog.csdn.net/niuchenliang524/article/details/82869319 操作es的客房端有多个,在此例出三种(具体区别自行百度),本文讲的是jes ...
- 【spring】InitializingBean接口
apollo 源码中有这么一个类 public class ReleaseMessageScanner implements InitializingBean @Override public voi ...
- win10在CMD操作MySQL时中文显示乱码
根据网上说明直接修改数据库各种的字符集没有效果,后来经过测试发现需要先更换至旧版CMD才行. 具体总流程如下: 1.在边框栏上右键,打开属性栏. 2.选择“使用旧版控制台” 3.重启CMD,并设置字符 ...
- SpringBoot application.properties 配置项详解
参考: http://blog.csdn.net/lpfsuperman/article/details/78287265### # spring boot application.propertie ...