一、线程锁

  线程安全,多线程操作时,内部会让所有线程排队处理。如:list/dict/Queue

  线程不安全 + 人(锁) => 排队处理

1、RLock/Lock:一次放一个

  a、创建10个线程,在列表中追加自己,如下代码:

    import threading
v = []
def func(arg):
v.append(arg)
print(v)
for i in range(10):
t = threading.Thread(target=func, args=(i,))
t.start()

  b、创建10个线程,把自己添加到列表中,再读取列表的最后一个,如下代码:

    import threading
import time v = []
lock = threading.Lock() def func(arg):
lock.acquire() # 加锁
v.append(arg)
time.sleep(0.01)
m = v[-1]
print(arg,m)
lock.release() # 释放锁 for i in range(10):
t = threading.Thread(target=func, args=(i,))
t.start()

  注意:RLock和Lock用法一样,只是Lock只能锁一次解一次,RLock支持锁多次解多次,以后用RLock。

2、BoundedSemaphore(n) ,信号量, 一次放n个,如下代码:

    import threading
import time lock = threading.BoundedSemaphore(3) def func(arg):
lock.acquire() # 加锁
time.sleep(1)
print(arg)
lock.release() # 释放锁 for i in range(10):
t = threading.Thread(target=func, args=(i,))
t.start()

3、condition(),一次放x个,x可由用户动态输入,代码如下:

  1)方式一:

    import time
import threading lock = threading.Condition() def func(arg):
print('线程进来了')
lock.acquire()
lock.wait() # 加锁
print(arg)
time.sleep(1)
lock.release() for i in range(10):
t =threading.Thread(target=func,args=(i,))
t.start() while True:
inp = int(input('>>>'))
lock.acquire()
lock.notify(inp)
lock.release()

  2)方式二:

    import time
import threading lock = threading.Condition()
def f1():
print('来执行函数了')
input(">>>")
return True def func(arg):
print('线程进来了')
lock.wait_for(f1) # 等函数f1执行完毕后继续往下走
print(arg)
time.sleep(1) for i in range(10):
t =threading.Thread(target=func,args=(i,))
t.start()

4、Event,一次放所有,如下示例:

    import threading

    lock = threading.Event()

    def func(arg):
print('线程来了')
lock.wait() # 加锁:红灯
print(arg) for i in range(10):
t =threading.Thread(target=func,args=(i,))
t.start() input(">>>")
lock.set() # 绿灯 lock.clear() # 再次变红灯 for i in range(10):
t =threading.Thread(target=func,args=(i,))
t.start() input(">>>")
lock.set()

总结:

线程安全,列表和字典线程安全;

为什么要加锁?    非线程安全,控制一段代码;

二、threading.local()

         作用:内部自动为每个线程维护一个空间(本质是字典),用于当前线程存取属于自己的值,保证线程之间的数据隔离。

    {

线程ID : { . . . },

线程ID : { . . . },

线程ID : { . . . },

线程ID : { . . . },

    }

    """
以后:Flask框架内部看到源码 上下文管理 """
import time
import threading
INFO = {}
class Local(object):
def __getattr__(self, item):
ident = threading.get_ident()
return INFO[ident][item] def __setattr__(self, key, value):
ident = threading.get_ident()
if ident in INFO:
INFO[ident][key] = value
else:
INFO[ident] = {key:value} obj = Local() def func(arg):
obj.phone = arg # 调用对象的 __setattr__方法(“phone”,1)
time.sleep(2)
print(obj.phone,arg) for i in range(10):
t =threading.Thread(target=func,args=(i,))
t.start()

threading.local()的原理:

    import threading
import time v = threading.local() def func(arg):
v.phone = arg # 内部会为当前线程创建一个空间用于存储:phone = 自己的值
time.sleep(2)
print(v.phone,arg) # 去当前线程自己空间取值 for i in range(10):
t = threading.Thread(target=func, args=(i,))
t.start()

threading.local()的使用:

三、线程池

以后写代码不要一个一个创建线程,而是创建一个线程池,再去线程池申请线程去执行任务,如下示例:

    from concurrent.futures import ThreadPoolExecutor
import time def task(a1,a2):
time.sleep(2)
print(a1,a2) # 创建了一个线程池(最多5个线程)
pool = ThreadPoolExecutor(5) for i in range(40):
# 去线程池中申请一个线程,让线程执行task函数。
pool.submit(task,i,8)
四、生产者消费者模型

三部分:生产者,消费者,队列

队列:先进先出

栈:后进先出

  问题1:生产者消费者模型解决了什么问题?不用一直等待的问题。如下示例:

    import time
import queue
import threading
q = queue.Queue() # 线程安全 def producer(id):
"""
生产者
:return:
"""
while True:
time.sleep(2)
q.put('包子')
print('厨师%s 生产了一个包子' %id ) for i in range(1,4):
t = threading.Thread(target=producer,args=(i,))
t.start() def consumer(id):
"""
消费者
:return:
"""
while True:
time.sleep(1)
v = q.get()
print('顾客 %s 吃了一个%s' % (id,v)) for i in range(1,3):
t = threading.Thread(target=consumer,args=(i,))
t.start()

五、面向对象补充(了解,以后不会写,flask源码中会遇到)

    class Foo(object):
def __init__(self):
self.name = 'alex'
def __setattr__(self, key, value):
print(key,value)
obj = Foo() # 结果为:name alex (说明执行了Foo的__setattr__方法)
# 分析:因为obj.x自动执行__setattr__
print(obj.name) # 报错
# 分析:__setattr__方法中没有设置的操作,只有打印

示例一:

    class Foo(object):
def __init__(self):
object.__setattr__(self, 'info', {}) # 在对象中设置值的本质
def __setattr__(self, key, value):
self.info[key] = value
def __getattr__(self, item):
return self.info[item]
obj = Foo()
obj.name = 'alex'
print(obj.name)

示例二:

线程锁、threading.local(flask源码中用的到)、线程池、生产者消费者模型的更多相关文章

  1. 线程锁,threadinglocal,线程池,生产者消费者模型

    1.线程锁 1.锁Lock(只能锁一次) import threading import time v = [] lock = threading.Lock() def func(arg): lock ...

  2. 4、网络并发编程--僵尸进程、孤儿进程、守护进程、互斥锁、消息队列、IPC机制、生产者消费者模型、线程理论与实操

    昨日内容回顾 操作系统发展史 1.穿孔卡片 CPU利用率极低 2.联机批处理系统 CPU效率有所提升 3.脱机批处理系统 CPU效率极大提升(现代计算机雏形) 多道技术(单核CPU) 串行:多个任务依 ...

  3. 第23章 java线程通信——生产者/消费者模型案例

    第23章 java线程通信--生产者/消费者模型案例 1.案例: package com.rocco; /** * 生产者消费者问题,涉及到几个类 * 第一,这个问题本身就是一个类,即主类 * 第二, ...

  4. flask 源码专题(十一):LocalStack和Local对象实现栈的管理

    目录 04 LocalStack和Local对象实现栈的管理 1.源码入口 1. flask源码关于local的实现 2. flask源码关于localstack的实现 3. 总结 04 LocalS ...

  5. 04 flask源码剖析之LocalStack和Local对象实现栈的管理

    04 LocalStack和Local对象实现栈的管理 目录 04 LocalStack和Local对象实现栈的管理 1.源码入口 1. flask源码关于local的实现 2. flask源码关于l ...

  6. Flask源码关于local的实现

    flask源码关于local的实现 try: # 协程 from greenlet import getcurrent as get_ident except ImportError: try: fr ...

  7. 锁丶threading.local丶线程池丶生产者消费者模型

    一丶锁 线程安全: 线程安全能够保证多个线程同时执行时程序依旧运行正确, 而且要保证对于共享的数据,可以由多个线程存取,但是同一时刻只能有一个线程进行存取. import threading v = ...

  8. 用尽洪荒之力学习Flask源码

    WSGIapp.run()werkzeug@app.route('/')ContextLocalLocalStackLocalProxyContext CreateStack pushStack po ...

  9. Flask 源码流程,上下文管理

    源码流程 创建对象 from flask import Flask """ 1 实例化对象 app """ app = Flask(__na ...

随机推荐

  1. mysql bin路径下的mysql被杀毒软件查杀后恢复过来也无法启动

    mysql服务被杀毒软件干掉之后操作 文件恢复过来后还是无法启动 同事使用杀毒软件之后发现,mysql的服务被干掉了.之后想到了处理办法: mysqld-nt -installnet start my ...

  2. 最小生成树之Kruskal算法和Prim算法

    依据图的深度优先遍历和广度优先遍历,能够用最少的边连接全部的顶点,并且不会形成回路. 这样的连接全部顶点并且路径唯一的树型结构称为生成树或扩展树.实际中.希望产生的生成树的全部边的权值和最小,称之为最 ...

  3. atitit.跨语言执行cmd cli api的原理及兼容性设计草案

    atitit.跨语言执行cmd cli api的原理及兼容性设计草案 1. 标准输入,标准输出,标准错误与重新定向1 2. 常见问题2 2.1. 执行bat文件2 2.2. 执行bat文件  /c   ...

  4. nginx源码学习_源码结构

    nginx的优秀除了体现在程序结构以及代码风格上,nginx的源码组织也同样简洁明了,目录结构层次结构清晰,值得我们去学习.nginx的源码目录与nginx的模块化以及功能的划分是紧密结合,这也使得我 ...

  5. sigpending

    信号的阻塞:通过sigprocmask()将信号集sigset_t中的信号设置为阻塞.SIG_BLOCK是指对相应信号的“递送阻塞”,内核在递送一个原来被阻塞的信号给进程时(而不是在产生该信号时),才 ...

  6. .net站内搜索

    蜘蛛,spider 爬网站.爬网站的过程:1.发现网站.百度把csdn当成关键网站,顺着已知的网站链接找到新的网站或者新的页面.SEO(搜索引擎优化)的第一个手段:建外链(外部链接).新网站吸引蜘蛛. ...

  7. mongodb更新器

    Name Description $inc Increments the value of the field by the specified amount. $mul Multiplies the ...

  8. if not aa 表示如果aa等于空就是true 相当于if not aa 相当于 if aa== 空

    aa='tt' print(not aa) #表示 bb是空的 not 表示空 bb='' print(not bb)

  9. ThinkPHP自动填充实现无限级分类的方法

    这篇文章主要介绍了ThinkPHP自动填充实现无限级分类的方法,是ThinkPHP项目开发中非常实用的一个技巧,需要的朋友可以参考下   本文实例展示了ThinkPHP自动填充实现无限级分类的方法,是 ...

  10. CentOS 6.5 Git源码安装

    首先清除系统自带git,使用如下命令 yum -y remove git 一.下载Git源码包 wget https://www.kernel.org/pub/software/scm/git/git ...