浅谈\(DP\):https://www.cnblogs.com/AKMer/p/10437525.html

题目传送门:https://www.luogu.org/problemnew/show/P1048

像这种给你\(n\)个物品,每个物品有占用体积和价值,求\(m\)体积的背包能装下的最大的价值的问题就是\(01\)背包问题。

我们可以设\(f[i][j]\)表示从前\(i\)个物品中选取一些占用\(j\)的体积可以装的最大的价值。

那么转移如下:

\(f[i][j]=f[i-1][j](j<weight_i)\)

\(f[i][j]=max(f[i][j],max(f[i-1][j],f[i-1][j-weight_i]+value_i))(weight_i\leqslant j \leqslant m)\)

时间复杂度:\(O(nm)\)

空间复杂度:\(O(nm)\)

代码如下:

#include <cstdio>
#include <algorithm>
using namespace std; const int maxT=1005,maxm=105; int T,m;
int f[maxm][maxT]; int read() {
int x=0,f=1;char ch=getchar();
for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
return x*f;
} int main() {
T=read(),m=read();
for(int i=1;i<=m;i++) {
int tim=read(),val=read();
for(int j=0;j<tim;j++)f[i][j]=f[i-1][j];
for(int j=tim;j<=T;j++)
f[i][j]=max(f[i][j],max(f[i-1][j],f[i-1][j-tim]+val));
} printf("%d\n",f[m][T]);
return 0;
}

但是实际上我们可以把第一维省掉,然后倒着枚举体积。因为体积大的状态总是由体积小的状态更新得来,所以我倒着枚举体积实际上还是用的\(i-1\)个物品的状态来更新我当前加入第\(i\)个物品之后的状态。

时间复杂度:\(O(nm)\)

空间复杂度:\(O(m)\)

代码如下:

#include <cstdio>
#include <algorithm>
using namespace std; const int maxT=1005,maxm=105; int T,m;
int f[maxT]; int read() {
int x=0,f=1;char ch=getchar();
for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
return x*f;
} int main() {
T=read(),m=read();
for(int i=1;i<=m;i++) {
int tim=read(),val=read();
for(int j=T;j>=tim;j--)
f[j]=max(f[j],f[j-tim]+val);
}
printf("%d\n",f[T]);
return 0;
}

洛谷【P1048】采药的更多相关文章

  1. 洛谷P1048 采药

    题目OJ地址 https://www.luogu.org/problemnew/show/P1048 https://vijos.org/p/1104 题目描述辰辰是个天资聪颖的孩子,他的梦想是成为世 ...

  2. 洛谷 P1048 采药【裸01背包】

    题目描述 辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师.为此,他想拜附近最有威望的医师为师.医师为了判断他的资质,给他出了一个难题.医师把他带到一个到处都是草药的山洞里对他说:" ...

  3. 洛谷 P1048 采药

    采药 01背包模板题. #include <iostream> #include <cstdio> using namespace std; //Mystery_Sky //一 ...

  4. 洛谷P1048 采药 二维dp化一维

    题目描述 辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师.为此,他想拜附近最有威望的医师为师.医师为了判断他的资质,给他出了一个难题.医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个 ...

  5. 洛谷P1048采药题解

    题目 这是一个裸的01背包,因为题目中没说可以采好多次,不多说上代码, #include<iostream> using namespace std; int main() { int n ...

  6. 洛谷P1048采药

    这道题一看就知道是01背包,我门用f[i]来表示时间剩余i时的最大的价值 一共只有两种选择取或者不取,可以得到方程式f[i]=max(f[i],f[i-a[i]]+v[i])(a[i]是表示时间,v[ ...

  7. 动态规划 洛谷P1048 [NOIP2005 普及组] 采药

    洛谷P1048 [NOIP2005 普及组] 采药 洛谷的一个谱架-的题目,考的是01背包问题,接下来分享一下我的题解代码. AC通过图: 我的代码: 1 //动态规划 洛谷P1048 [NOIP20 ...

  8. P1048 采药(洛谷,动态规划递推,01背包原题)

    题目直接放链接 P1048 采药 这题只是01背包+背景故事而已 原题来的 PS:我写了一篇很详细的01背包说明,如果下面ac代码有看不懂的地方可以去看看 对01背包的分析与理解(图文) 下面上ac代 ...

  9. 动态规划 洛谷P1616 疯狂的采药

    动态规划 洛谷P1616 疯狂的采药 同样也是洛谷的动态规划一个普及-的题目,接下来分享一下我做题代码 看到题目,没很认真的看数据大小,我就提交了我的代码: 1 //动态规划 洛谷P1616 疯狂的采 ...

  10. 洛谷1640 bzoj1854游戏 匈牙利就是又短又快

    bzoj炸了,靠离线版题目做了两道(过过样例什么的还是轻松的)但是交不了,正巧洛谷有个"大牛分站",就转回洛谷做题了 水题先行,一道傻逼匈牙利 其实本来的思路是搜索然后发现写出来类 ...

随机推荐

  1. 主攻ASP.NET MVC4.0之重生:Jquery Mobile 按钮+对话框使用

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  2. INDEL的重新比对和碱基质量分数的重新校准

    1.为什么要做这两步(why): indel的重新比对:这是由于比对软件的自身限制,其可能将包括indel的read解释为snp的read,这就导致calling的错误和后面的碱基质量分数的重新校准. ...

  3. Java 类及类的构造方法

    类 类是一个模子,确定对象将会拥有的特性(属性)和行为(方法). 类的特点 类时对象的类型 具有相同属性和方法的一组对象的集合 构造方法 作用就是对类进行初始化. 如果你没有定议任何构造方法的形式,J ...

  4. 关于Hystrix

    RPC远程调用过程中如何防止服务雪崩效用 微服务中如何保护服务 Hystrix是一个微服务中关于服务保护框架,在分布式中能够实现对服务容错.出错之后的预备方案 背景 在今天,基于SOA的架构已经大行其 ...

  5. Owin and Startup class

    https://docs.microsoft.com/en-us/aspnet/aspnet/overview/owin-and-katana/owin-startup-class-detection ...

  6. 【bzoj2815】灾难[ZJOI2012](拓扑排序+lca)

    题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2815 原版题解:http://fanhq666.blog.163.com/blog/st ...

  7. 【bzoj2423】最长公共子序列[HAOI2010](dp)

    题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2423 题目大意:求两个字符串的最长公共子序列长度和最长公共子序列个数. 这道题的话,对于 ...

  8. hibernate学习(3)

    0 列表功能实现 1 表与表之间关系回顾 (1)一对多(客户和联系人) (2)多对多(用户和角色) 2 hibernate 一对多操作 (1)一对多映射配置 (2)一对多级联保存 (3)一对多级联删除 ...

  9. SSIS包的组建之连接管理器

    上一篇我们通过一个示例来介绍一下SSIS 包的开发.接下来的内容我们将学习一下包中各个选项卡的使用.如:连接管理器选项卡.控制流选项卡.数据流选项卡和事件处理选项卡等等.这一篇将介绍一下连接管理器作用 ...

  10. ubuntu更改启动顺序

    在ubuntu中修改启动配置. 启动相关grub2主要包含下面三个文件:1.   /boot/grub/grub.cfg 文件    2.   /etc/grub.d/ 文件夹   3.   /etc ...