layout: post

title: Codeforces Round 251 (Div. 2)

author: "luowentaoaa"

catalog: true

tags:

mathjax: true

- codeforces

- 模拟


传送门

A.[Devu, the Singer and Churu, the Joker (签到)

题意

主角有N首不同时长的歌曲,每首歌曲之间需要相隔10分钟,并且歌曲必须连续,再主角唱完歌的时候可以表演每次五分钟的其他节目。问最多表演多少场其他节目, 不能完成演唱输出-1

思路

直接先按照题意安排歌曲,然后再在空缺的时间中填充魔术。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=1e9+7;
const int maxn=1e6+50;
const ll inf=0x3f3f3f3f3f3f3f3fLL;
int a[maxn];
int main()
{
std::ios::sync_with_stdio(false);
std::cin.tie(0);
std::cout.tie(0);
int n,d;
cin>>n>>d;
for(int i=1;i<=n;i++)cin>>a[i];
if((n-1)*10>=d){
cout<<-1<<endl;return 0;
}
int cnt=0;
int ex=d-(n-1)*10;
int num=0;
for(int i=1;i<=n;i++){
if(i!=1)num+=10,cnt+=2;
num+=a[i];
}
if(num>d){
cout<<-1<<endl;return 0;
}
else{
cnt+=(d-num)/5;
cout<<cnt<<endl;
}
return 0;
}

B.Devu, the Dumb Guy (贪心)

题意

n个课程,每个课程都有ci个章节,完成一章需要X分钟,但是如果完成一个课程后面的课程每章都会减少一分钟(最少不低于1分钟),问少需要几分完成所有课程。

题解

直接排序 然后根据题意模拟贪心。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=1e9+7;
const int maxn=1e6+50;
const ll inf=0x3f3f3f3f3f3f3f3fLL;
int a[maxn];
int cnt[maxn];
int main()
{
std::ios::sync_with_stdio(false);
std::cin.tie(0);
std::cout.tie(0);
int n,x;
cin>>n>>x;
for(int i=1;i<=n;i++)cin>>a[i];
sort(a+1,a+1+n);
ll sum=0;
for(int i=1;i<=n;i++){
sum+=a[i]*max(1LL*(x-i+1LL),1LL);
}
cout<<sum<<endl;
return 0;
}

C.Devu and Partitioning of the Array (大模拟)

题意

给出N个数,让你分成k块,其中p块的和为偶数

思路

只要知道偶数+偶数=偶数,奇数+奇数=偶数 奇数+偶数=奇数的特性就可以做了,

不过情况比较多需要讨论

先把奇数偶数分类,然后如果奇数比较多,就判断奇数多出来的那些可不可以组成偶数(也就是多出来的是不是偶数个)

注意讨论奇数和偶数分别为0的情况。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=1e9+7;
const int maxn=1e6+50;
const ll inf=0x3f3f3f3f3f3f3f3fLL;
ll a[maxn];
stack<int>odd,even,exeven,exodd;
int main()
{
std::ios::sync_with_stdio(false);
std::cin.tie(0);
std::cout.tie(0);
int n,k,p;
cin>>n>>k>>p;
for(int i=1;i<=n;i++){
cin>>a[i];
if(a[i]&1)odd.push(a[i]);
else even.push(a[i]);
}
int oddnum=odd.size();
int odd_need_num=k-p;
int even_need_num=p;
if(odd_need_num>oddnum){
cout<<"NO"<<endl;return 0;
}
else{
if((oddnum-odd_need_num)%2!=0){
cout<<"NO"<<endl;return 0;
}
else{
int ex=oddnum-odd_need_num;
for(int i=1;p!=0&&i<=ex;i++){
exeven.push(odd.top());
odd.pop();
}
if(!p){
while(!even.empty()){
exodd.push(even.top());
even.pop();
}
}
if(ex/2+even.size()<even_need_num){
cout<<"NO"<<endl;return 0;
}
cout<<"YES"<<endl;
for(int i=1;i<odd_need_num;i++){
cout<<1<<" "<<odd.top()<<endl;
odd.pop();
}
if(!odd.empty()){
cout<<odd.size()+exodd.size()<<" ";
while(!odd.empty()){
cout<<odd.top()<<" ";
odd.pop();
}
while(!exodd.empty()){
cout<<exodd.top()<<" ";
exodd.pop();
}
cout<<endl;
}
for(int i=1;i<p;i++){
if(!even.empty()){
cout<<1<<" "<<even.top()<<endl;
even.pop();
}
else{
cout<<2<<" "<<exeven.top();
exeven.pop();
cout<<" "<<exeven.top()<<endl;
exeven.pop();
}
}
if(even.size()+exeven.size()==0)return 0;
cout<<even.size()+exeven.size()<<" ";
while(!even.empty()||!exeven.empty()){
if(!even.empty()){
cout<<even.top()<<" ";
even.pop();
}
else{
cout<<exeven.top()<<" ";
exeven.pop();
cout<<exeven.top()<<" ";
exeven.pop();
}
}
}
}
return 0;
}

D.Devu and his Brother (三分)

题意

两个数组A,B.想要数组A的最小值不比数组B的最大值小,一次操作可以让某个数字的一个元素增大或者减小1 问达成目的最少需要几次操作。

思路

题目的意思就是找出一个值X使得A中的所有元素都大于等于X,B中的元素小于等于X。

所以答案就是

\[ans=(\sum_{i=1}^{n}x-a[i])+(\sum_{i=1}^{m}b[i]-x)\\a[i]<x,b[i]>x
\]

假设这个x是最优的解,那么X增大或者减小都会使得ans变大,所以题目就是一个凹函数求最小值了

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=1e9+7;
const int maxn=1e6+50;
const ll inf=0x3f3f3f3f3f3f3f3fLL;
ll a[maxn];
ll b[maxn];
int n,m;
ll check(ll x){
ll ans=0;
for(int i=1;i<=n;i++)if(a[i]<x)ans+=x-a[i];
for(int i=1;i<=m;i++)if(b[i]>x)ans+=b[i]-x;
return ans;
}
int main()
{
std::ios::sync_with_stdio(false);
std::cin.tie(0);
std::cout.tie(0);
cin>>n>>m;
for(int i = 1; i <= n; i++){
cin>>a[i];
}
for(int i = 1; i <= m; i++){
cin>>b[i];
}
ll l=0,r=1e11,ans=inf;
for(int i=1;i<=100;i++){
ll m1=(l+r)/2;
ll m2=(m1+r)/2;
ll ans1=check(m1),ans2=check(m2);
if(ans1>ans2){
l=m1;
ans=min(ans,ans2);
}
else{
r=m2;
ans=min(ans,ans1);
}
}
cout<<ans<<endl;
return 0;
}

E.Devu and Birthday Celebration (莫比乌斯反演,素因子分解,计数原理,组合数学)

题意

Q次询问 给出一个数N 让你分成F份,使得这F份的和为N并且这F份数 最大公约数为1,问有多少种分法。Q,N,F范围都是1-1e5。

思路

如果不考虑公约数 那么答案就是Cn-1,f-1。

设F(n,k)为n个数分成F份并且最大公约数为1的答案数

所以

\[F(n,k)=C_{n-1}^{k-1}-\sum_{g>1}^{n}F(n/g,k)
\]

然后直接递归写就行。

\[F(n)=n分解为k份最大公约数为任意的值
\]

\[G(n)=n分解为k份且最大公约数为n的值
\]

可知

\[F(n,k)=C_{n-1}^{k-1}
\]

同时

\[F(n)=\sum_{d|n}G(d)
\]

于是根据莫比乌斯反演因数反演

\[G(n)=\sum_{d|n}u(d)F(n/d)
\]

/*
莫比乌斯反演
*/
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=1e9+7;
const int maxn=1e6+50;
const ll inf=0x3f3f3f3f3f3f3f3fLL;
ll inv[maxn],p[maxn];
ll ksm(ll x,ll n){
ll ans=1;
while(n){
if(n&1)ans=(ans*x)%mod;
x=(x*x)%mod;
n>>=1;
}
return ans;
}
int prime[maxn];
bool notprime[maxn];
int mu[maxn];
void init(int n){
mu[1]=1;
int tot=0;
for(int i=2;i<=n;i++){
if(!notprime[i])prime[++tot]=i,mu[i]=-1;
for(int j=1;j<=tot;j++){
if(i*prime[j]>n)break;
notprime[i*prime[j]]=true;
if(i%prime[j]==0){
mu[i*prime[j]]=0;
break;
}
else mu[i*prime[j]]=-mu[i];
}
}
inv[0]=p[0]=1;
for(int i=1;i<=n;i++)
p[i]=p[i-1]*i%mod,inv[i]=ksm(p[i],mod-2);
}
ll cal(int n,int m){
if(n<m)return 0LL;
return p[n]*inv[n-m]%mod*inv[m]%mod;
}
int main()
{
std::ios::sync_with_stdio(false);
std::cin.tie(0);
std::cout.tie(0);
init(1e5);
int q;
cin>>q;
while(q--){
ll n,f;
cin>>n>>f;
ll ans=0;
for(int i=1;i*i<=n;i++){
if(n%i==0){
ans=(ans+mu[i]*cal(n/i-1,f-1)+mod)%mod;
if(n/i!=i)ans=(ans+mu[n/i]*cal(i-1,f-1)+mod)%mod;
}
}
cout<<ans<<endl;
}
return 0;
}
/*
枚举GCD值
*/
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=1e9+7;
const int maxn=1e6+50;
const ll inf=0x3f3f3f3f3f3f3f3fLL;
ll inv[maxn],p[maxn];
ll ksm(ll x,ll n){
ll ans=1;
while(n){
if(n&1)ans=(ans*x)%mod;
x=(x*x)%mod;
n>>=1;
}
return ans;
}
vector<int>G[maxn];
void init(int n){
inv[0]=p[0]=1;
for(int i=1;i<=n;i++)
p[i]=p[i-1]*i%mod,inv[i]=ksm(p[i],mod-2);
for(int i=2;i<=n;i++){
for(int j=i;j<=n;j+=i){
G[j].push_back(i);
}
}
}
ll cal(int n,int m){
if(n<m)return 0LL;
return p[n]*inv[n-m]%mod*inv[m]%mod;
}
ll vis[maxn];
int who[maxn];
ll F(int n,int k,int q){
if(who[n]==q)return vis[n];
ll ans=cal(n-1,k-1);
for(int i=0;i<G[n].size();i++){
ans=(ans-F(n/G[n][i],k,q)+mod)%mod;
}
who[n]=q;
vis[n]=ans;
return ans;
}
int main()
{
std::ios::sync_with_stdio(false);
std::cin.tie(0);
std::cout.tie(0);
init(1e5);
int q;
cin>>q;
while(q){
ll n,f;
cin>>n>>f;
cout<<F(n,f,q)<<endl;
q--;
}
return 0;
}
/*
枚举GCD倍数
*/
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=1e9+7;
const int maxn=1e6+50;
const ll inf=0x3f3f3f3f3f3f3f3fLL;
ll inv[maxn],p[maxn];
ll ksm(ll x,ll n){
ll ans=1;
while(n){
if(n&1)ans=(ans*x)%mod;
x=(x*x)%mod;
n>>=1;
}
return ans;
}
void init(int n){
inv[0]=p[0]=1;
for(int i=1;i<=n;i++)
p[i]=p[i-1]*i%mod,inv[i]=ksm(p[i],mod-2);
}
ll cal(int n,int m){
if(n<m)return 0LL;
return p[n]*inv[n-m]%mod*inv[m]%mod;
}
vector<int> get(int n){
vector<int>G;
for(int i=2;i*i<=n;i++){
if(n%i==0){
G.push_back(i);
while(n%i==0)n/=i;
}
}
if(n!=1)G.push_back(n);
return G;
}
ll F(int n,int k){
vector<int>G=get(n);
ll ans=0,num=1<<G.size();
for(int i=0;i<num;i++){
ll tmp=1,sign=1;
for(int j=0;j<G.size();j++){
if(i&(1<<j)){
sign*=-1;
tmp*=G[j];
}
}
ans=(ans+sign*cal(n/tmp-1,k-1)%mod+mod)%mod;
}
return ans;
}
int main()
{
std::ios::sync_with_stdio(false);
std::cin.tie(0);
std::cout.tie(0);
init(1e5);
int q;
cin>>q;
while(q--){
ll n,f;
cin>>n>>f;
cout<<F(n,f)<<endl;
}
return 0;
}

Codeforces Round 251 (Div. 2)的更多相关文章

  1. Codeforces Round#251(Div 2)D Devu and his Brother

    --你以为你以为的.就是你以为的? --有时候还真是 题目链接:http://codeforces.com/contest/439/problem/D 题意大概就是要求第一个数组的最小值要不小于第二个 ...

  2. Codeforces Round #251 (Div. 2) C. Devu and Partitioning of the Array

    注意p的边界情况,p为0,或者 p为k 奇数+偶数 = 奇数 奇数+奇数 = 偶数 #include <iostream> #include <vector> #include ...

  3. Codeforces Round #251 (Div. 2) B. Devu, the Dumb Guy

    注意数据范围即可 #include <iostream> #include <vector> #include <algorithm> using namespac ...

  4. Codeforces Round #251 (Div. 2) A - Devu, the Singer and Churu, the Joker

    水题 #include <iostream> #include <vector> #include <algorithm> using namespace std; ...

  5. Codeforces Round #366 (Div. 2) ABC

    Codeforces Round #366 (Div. 2) A I hate that I love that I hate it水题 #I hate that I love that I hate ...

  6. Codeforces Round #354 (Div. 2) ABCD

    Codeforces Round #354 (Div. 2) Problems     # Name     A Nicholas and Permutation standard input/out ...

  7. Codeforces Round #368 (Div. 2)

    直达–>Codeforces Round #368 (Div. 2) A Brain’s Photos 给你一个NxM的矩阵,一个字母代表一种颜色,如果有”C”,”M”,”Y”三种中任意一种就输 ...

  8. cf之路,1,Codeforces Round #345 (Div. 2)

     cf之路,1,Codeforces Round #345 (Div. 2) ps:昨天第一次参加cf比赛,比赛之前为了熟悉下cf比赛题目的难度.所以做了round#345连试试水的深浅.....   ...

  9. Codeforces Round #279 (Div. 2) ABCDE

    Codeforces Round #279 (Div. 2) 做得我都变绿了! Problems     # Name     A Team Olympiad standard input/outpu ...

随机推荐

  1. [洛谷P3376]【模板】网络最大流(ISAP)

    C++ Code:(ISAP) #include <cstdio> #include <cstring> #define maxn 1210 #define maxm 1200 ...

  2. [洛谷P2384]最短路

    题目大意:给你一个图,要你求出其中1->n路径中乘积最小的一条路 题解:用$log_2$把乘法变成加法,然后记录每个点的前驱,最后求出答案 C++ Code: #include<cstdi ...

  3. SICAU-OJ: 三角关系

    三角关系 题意: 给出两个数n和k,统计(a,b,c)三元组满足(a+b)%k=0,(b+c)%k=0,(a+c)%k=0且1<=a,b,c<=n的数量. 题解: 由(a+b)%k=0,( ...

  4. Patch Windows with SSM on AWS

    ec2ssmupdate https://docs.amazonaws.cn/systems-manager/latest/userguide/systems-manager-patch.htmlht ...

  5. Jquery 获取checkbox的checked问题以及解决方案

    转载自:http://www.cnblogs.com/-run/archive/2011/11/16/2251250.html 这个郁闷了,今天写这个功能的时候发现了问题,上网找了好多资料对照,更加纠 ...

  6. shell正则表达式(1)

    一.什么是正则 正则就是用一些具有特殊含义的符号组合到一起(称为正则表达式)来描述字符或者字符串的方法.或者说:正则就是用来描述一类事物的规则. 二.grep 1.参数 -n  :显示行号 -o  : ...

  7. RPC-Thrift(二)

    TTransport TTransport负责数据的传输,先看类结构图. 阻塞Server使用TServerSocket,它封装了ServerSocket实例,ServerSocket实例监听到客户端 ...

  8. Idea导入的工程看不到src等代码

    问题描述: 从其他地方拷贝过来的工程,在本地导入到idea中时,展示如下的页面,里面的其他文件都看不到. 解决办法:(不知道是具体的什么原因引起的) 1. 关闭IDEA, 2.然后删除项目文件夹下的. ...

  9. bzoj2811 [Apio2012]Guard

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2811 [题解] 首先我们先把没看到忍者的段去掉,可以用线段树做. 如果剩下的就是K,那么特判 ...

  10. set .net principle

    var ticket = new FormsAuthenticationTicket(1, username, DateTime.Now, DateTime.Now.AddMinutes(FormsA ...