Merkle Tree算法详解
转载自:http://blog.csdn.net/yuanrxdu/article/details/22474697
Merkle Tree是Dynamo中用来同步数据一致性的算法,Merkle Tree是基于数据HASH构建的一个树。它具有以下几个特点:
1、数据结构是一个树,可以是二叉树,也可以是多叉树(本BLOG以二叉树来分析)
2、Merkle Tree的叶子节点的value是数据集合的单元数据或者单元数据HASH。
3、Merke Tree非叶子节点value是其所有子节点value的HASH值。
为了更好的理解,我们假设有A和B两台机器,A需要与B相同目录下有8个文件,文件分别是f1 f2 f3 ....f8。这个时候我们就可以通过Merkle Tree来进行快速比较。假设我们在文件创建的时候每个机器都构建了一个Merkle Tree。具体如下图:
从上图可得知,叶子节点node7的value = hash(f1),是f1文件的HASH;而其父亲节点node3的value = hash(v7, v8),也就是其子节点node7 node8的值得HASH。就是这样表示一个层级运算关系。root节点的value其实是所有叶子节点的value的唯一特征。
假如A上的文件5与B上的不一样。我们怎么通过两个机器的merkle treee信息找到不相同的文件? 这个比较检索过程如下:
1、首先比较v0是否相同,如果不同,检索其孩子node1和node2.
2、v1 相同,v2不同。检索node2的孩子node5 node6;
3、v5不同,v6相同,检索比较node5的孩子node 11 和node 12
4、v11不同,v12相同。node 11为叶子节点,获取其目录信息。
5、检索比较完毕。
以上过程的理论复杂度是Log(N)。实际过程是大于这个复杂度的,因为不同value的节点需要每个子节点进行比较。过程描述图如下:
从上图可以得知真个过程可以很快的找到对应的不相同的文件。
如果A机器的目录下增加了一个文件f9。整个merkle tree就会变成这样的:
其中红色字体是需要进行运算的步骤,整个过程是从叶子节点发起的,直接回溯到root节点为止。
假如目录下的f1被删除。整树的运算变化图如下:
红色字体是需要进行的运算。
从上可以得知,merkle tree在大数据集合校验可以提高校验的效率的。从Dynamo论文中可以看出,大量使用merkle tree来同步分布式节点的文件和写操作,尤其是在服务节点异常后的情况,具体细节可以参看Dynamo论文中的描述。
Merkle Tree算法详解的更多相关文章
- Kd Tree算法详解
kd树(k-dimensional树的简称),是一种分割k维数据空间的数据结构,主要应用于多维空间关键数据的近邻查找(Nearest Neighbor)和近似最近邻查找(Approximate Nea ...
- [Network Architecture]DPN(Dual Path Network)算法详解(转)
https://blog.csdn.net/u014380165/article/details/75676216 论文:Dual Path Networks 论文链接:https://arxiv.o ...
- BM算法 Boyer-Moore高质量实现代码详解与算法详解
Boyer-Moore高质量实现代码详解与算法详解 鉴于我见到对算法本身分析非常透彻的文章以及实现的非常精巧的文章,所以就转载了,本文的贡献在于将两者结合起来,方便大家了解代码实现! 算法详解转自:h ...
- kmp算法详解
转自:http://blog.csdn.net/ddupd/article/details/19899263 KMP算法详解 KMP算法简介: KMP算法是一种高效的字符串匹配算法,关于字符串匹配最简 ...
- 机器学习经典算法详解及Python实现--基于SMO的SVM分类器
原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector ...
- Ext.Net学习笔记22:Ext.Net Tree 用法详解
Ext.Net学习笔记22:Ext.Net Tree 用法详解 上面的图片是一个简单的树,使用Ext.Net来创建这样的树结构非常简单,代码如下: <ext:TreePanel runat=&q ...
- [转] KMP算法详解
转载自:http://www.matrix67.com/blog/archives/115 KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段. 我们这里说的K ...
- 【转】AC算法详解
原文转自:http://blog.csdn.net/joylnwang/article/details/6793192 AC算法是Alfred V.Aho(<编译原理>(龙书)的作者),和 ...
- KMP算法详解(转自中学生OI写的。。ORZ!)
KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段. 我们这里说的KMP不是拿来放电影的(虽然我很喜欢这个软件),而是一种算法.KMP算法是拿来处理字符串匹配的.换句 ...
随机推荐
- ssm框架整合小结
1.整合思路 一.Dao层:整合mybatis和spring 需要的jar包: 1.mybatis的jar包 2.Mysql数据库驱动 3.数据库连接池 4.Mybatis和spring的整合包. 5 ...
- 【转载】git/github初级运用自如
之前了解过github,并在上面看了一些项目的源代码,于是自己也在github上创建了账户,希望以后有机会也把自己的项目托管在上面去.但是前提你要先了解git/github,下面的内容是从我的好基友虫 ...
- Classpath entry org.eclipse.m2e.MAVEN2_CLASSPATH_CONTAINER will not be exported
打开navigator,修改下面的classpath文件: 将<classpathentry kind="con" path="org.maven.ide.ecli ...
- 语言基础:C#输入输出与数据类型及其转换
今天学习了C#的定义及特点,Visual Studio.Net的集成开发环境和C#语言基础. C#语言基础资料——输入输出与数据类型及其转换 函数的四要素:名称,输入,输出,加工 输出 Console ...
- PHP之APC缓存详细介绍(转)
1.APC缓存简介 APC,全称是Alternative PHP Cache,官方翻译叫”可选PHP缓存”.它为我们提供了缓存和优化PHP的中间代码的框架. APC的缓存分两部分:系统缓存和用户数据缓 ...
- netty 解决TCP粘包与拆包问题(三)
今天使用netty的固定长度进行解码 固定长度解码的原理就是按照指定消息的长度对消息自动解码. 在netty实现中,只需要采用FiexedLengthFrameDecoder解码器即可... 以下是服 ...
- *像word一样编辑复杂的文本:SpannableString 样式详介
简介: 使用android.text.Spanned; android.text.SpannableString; android.text.SpannableStringBuilder; 和 and ...
- jQuery $.post $.ajax用法
jQuery $.post $.ajax用法 jQuery.post( url, [data], [callback], [type] ) :使用POST方式来进行异步请求 参数: url (Stri ...
- Android开发之ProgressDialog与ProgressBar
ProgressDialog,继承AlertDialog.所以ProgressDialog就是一个在对话框中显示ProgressDialog,并显示进度的文本信息. 并且没有取消和确定按钮,只能通过b ...
- WPF中的Drawing
以前在用WinForm的时候,可以通过GDI+接口在窗体上动态绘制自定义的图形.在WPF中有没有对应的API呢,最近项目中用到了这个,在这里总结一下. WPF中的Drawing主要提供了几类API: ...