For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in non-increasing order first, and then in non-decreasing order, a new number can be obtained by taking the second number from the first one. Repeat in this manner we will soon end up at the number 6174 -- the "black hole" of 4-digit numbers. This number is named Kaprekar Constant.

For example, start from 6767, we'll get:

7766 - 6677 = 1089

9810 - 0189 = 9621

9621 - 1269 = 8352

8532 - 2358 = 6174

7641 - 1467 = 6174

... ...

Given any 4-digit number, you are supposed to illustrate the way it gets into the black hole.

Input Specification:

Each input file contains one test case which gives a positive integer N in the range (0, 10000).

Output Specification:

If all the 4 digits of N are the same, print in one line the equation "N - N = 0000". Else print each step of calculation in a line until 6174 comes out as the difference. All the numbers must be printed as 4-digit numbers.

Sample Input 1:

6767

Sample Output 1:

7766 - 6677 = 1089

9810 - 0189 = 9621

9621 - 1269 = 8352

8532 - 2358 = 6174

Sample Input 2:

2222

Sample Output 2:

2222 - 2222 = 0000

坑点1、数字都要四位的2、如果是判断下一个式子的差不等于上个结果,然后跳出的话,那么需要判断,是不是第一次输出。比如,输入6174,结果就等于6174,那么就会没输出,直接跳出。

 #include <iostream>

 #include <algorithm>

 #include<string>

 #include <sstream>

 #include <iomanip>

 using namespace std;

 int a1[];

 int a2[];

 int bb[];

 bool cmp1(int a,int b)

 {

    return a>b;

 }

 bool cmp2(int a,int b)

 {

    return a<b;

 }

 int main()

 {

       string n;

       int i;

       while(cin>>n)

       {

          int tt,c1,c2;

          stringstream ss1;

          ss1<<n;

          ss1>>tt;

          i=;

          bool fir=true;

          while(true)

          {

                   string ss;

                   stringstream ss2;

                   ss2<<setfill('')<<setw()<<tt;

                   ss2>>ss;

                   for(i=;i<ss.length();i++)

                   {

                  a1[i]=ss[i]-'';

                    a2[i]=a1[i];

                   }

              sort(a1,a1+ss.length(),cmp1);

                sort(a2,a2+ss.length(),cmp2);

                    c1=; c2=;

                for(i=;i<ss.length();i++)

                   {

                    c1=c1*+a1[i];

                      c2=c2*+a2[i];

                   }

                   if(c1-c2==tt&&!fir)  break;

                   else 

                   {

                         fir=false;

                         cout<<setfill('')<<setw()<<c1<<" - "<<setfill('')<<setw()<<c2<<" = "<<setfill('')<<setw()<<c1-c2<<endl;

                         tt=c1-c2;

                   }     

          }  

       }

    return ;

 }

The Black Hole of Numbers (strtoint+inttostr+sort)的更多相关文章

  1. PAT 1069 The Black Hole of Numbers

    1069 The Black Hole of Numbers (20 分)   For any 4-digit integer except the ones with all the digits ...

  2. PAT 1069 The Black Hole of Numbers[简单]

    1069 The Black Hole of Numbers(20 分) For any 4-digit integer except the ones with all the digits bei ...

  3. pat1069. The Black Hole of Numbers (20)

    1069. The Black Hole of Numbers (20) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, ...

  4. 1069. The Black Hole of Numbers (20)【模拟】——PAT (Advanced Level) Practise

    题目信息 1069. The Black Hole of Numbers (20) 时间限制100 ms 内存限制65536 kB 代码长度限制16000 B For any 4-digit inte ...

  5. pat 1069 The Black Hole of Numbers(20 分)

    1069 The Black Hole of Numbers(20 分) For any 4-digit integer except the ones with all the digits bei ...

  6. PAT 甲级 1069 The Black Hole of Numbers (20 分)(内含别人string处理的精简代码)

    1069 The Black Hole of Numbers (20 分)   For any 4-digit integer except the ones with all the digits ...

  7. PAT_A1069#The Black Hole of Numbers

    Source: PAT A1069 The Black Hole of Numbers (20 分) Description: For any 4-digit integer except the o ...

  8. 1069 The Black Hole of Numbers (20分)

    1069 The Black Hole of Numbers (20分) 1. 题目 2. 思路 把输入的数字作为字符串,调用排序算法,求最大最小 3. 注意点 输入的数字的范围是(0, 104), ...

  9. 1069. The Black Hole of Numbers (20)

    For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in ...

随机推荐

  1. 临时2级页表的初始化过程 head_32.S 相关代码解释

    page_pde_offset = (__PAGE_OFFSET >> 20); /* __PAGE_OFFSET是0xc0000000,page_pde_offset = 3072 = ...

  2. 转载:Restore SQL Server database and overwrite existing database

    转载自:https://www.mssqltips.com/sqlservertutorial/121/restore-sql-server-database-and-overwrite-existi ...

  3. html的标签中 unselectable=on 属性的作用

    在IE浏览器中,当input获得焦点时,点击有unselectable="on"属性的标签时,不会触发onblur事件. 加上该属性的元素不能被选中. < !DOCTYPE ...

  4. HDU 2181 哈密顿绕行世界问题 (DFS)

    哈密顿绕行世界问题 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  5. centos 安装 acrobat Reader之后

    IV: 为Firefox等浏览器安装Acrobat Reader插件:sudo /usr/local/Adobe/Acrobat7.0/Browser/install_browser_plugin按照 ...

  6. C# WPF 连接数据库Sqlhelper类

    从视频上学习到的WPF连接数据库的方法 需要配置一个 configuration 文件,包含 SQL instance 的相关信息 using System; using System.Collect ...

  7. asp.net微信支付打通发货通知代码

    上次遇到微信支付,发货接口的时候,官方的demo也没有提供相应的代码 ,因本人技术有限,百度 google 很久都没有asp.net 版本的,最后只好硬着头皮自己搞,没想到官方文档也是错的. 我这一步 ...

  8. 【AngularJs】---Error: [$injector:modulerr] Failed to instantiate module starter.services

    [遇到问题解决问题,原谅我这个菜鸟] 加了services angular.module('starter', ['ionic', 'starter.controllers', 'starter.se ...

  9. Spring与Hibernate整合之通用Dao的实现

    在上一篇文章中写了如何直接利用HibernateTemplate进行数据库操作,但在一般的项目中很少直接得到HibernateTemplate的Bean对象从而操作数据库的,下面就简要介绍一下实现通用 ...

  10. 如何检查mysql中建立的索引是否生效的检测方法及相关参数说明

    所使用的mysql函数explain语法:explain < table_name >例如: explain select * from t3 where id=3952602;expla ...