C. Freelancer's Dreams

Time Limit: 20 Sec

Memory Limit: 256 MB

题目连接

http://www.codeforces.com/contest/605/problem/C

Description

Mikhail the Freelancer dreams of two things: to become a cool programmer and to buy a flat in Moscow. To become a cool programmer, he needs at least p experience points, and a desired flat in Moscow costs q dollars. Mikhail is determined to follow his dreams and registered at a freelance site.

He has suggestions to work on n distinct projects. Mikhail has already evaluated that the participation in the i-th project will increase his experience by ai per day and bring bi dollars per day. As freelance work implies flexible working hours, Mikhail is free to stop working on one project at any time and start working on another project. Doing so, he receives the respective share of experience and money. Mikhail is only trying to become a cool programmer, so he is able to work only on one project at any moment of time.

Find the real value, equal to the minimum number of days Mikhail needs to make his dream come true.

For example, suppose Mikhail is suggested to work on three projects and a1 = 6, b1 = 2, a2 = 1, b2 = 3, a3 = 2, b3 = 6. Also, p = 20and q = 20. In order to achieve his aims Mikhail has to work for 2.5 days on both first and third projects. Indeed,a1·2.5 + a2·0 + a3·2.5 = 6·2.5 + 1·0 + 2·2.5 = 20 and b1·2.5 + b2·0 + b3·2.5 = 2·2.5 + 3·0 + 6·2.5 = 20.

Input

The first line of the input contains three integers np and q (1 ≤ n ≤ 100 000, 1 ≤ p, q ≤ 1 000 000) — the number of projects and the required number of experience and money.

Each of the next n lines contains two integers ai and bi (1 ≤ ai, bi ≤ 1 000 000) — the daily increase in experience and daily income for working on the i-th project.

Output

Print a real value — the minimum number of days Mikhail needs to get the required amount of experience and money. Your answer will be considered correct if its absolute or relative error does not exceed 10 - 6.

Namely: let's assume that your answer is a, and the answer of the jury is b. The checker program will consider your answer correct, if 

Sample Input

3 20 20
6 2
1 3
2 6

Sample Output

5.000000000000000

HINT

题意

给你一个2*n的矩阵A,然后让你找到一个n*2的矩阵B

要求使得矩阵中的所有数的和尽量小,使得A*B = [X,Y]

要求X>=P,Y>=Q

输出最小和

题解:

转化成计算几何问题,相当于给了你n个向量,然后你需要一个线性组合使得某个向量,超过P,Q这个点

我们可以将所有向量组成一个凸包。

这里需要一个证明,假设B矩阵的和是1的话,所有向量的线性组合最多达到这个凸包的边界上。

如果n=1的话,很显然成立,n=2也显然成立,n=3必然比n=2指的更加短,所以这个结论就成立了?

然后我们就二分答案就好了,然后再判一判(P,Q)这个点是否在这个凸包内部就好了咯。

代码:

#include<iostream>
#include<math.h>
#include<algorithm>
#include<cstring>
#include<cstdio> using namespace std; #define maxn 100005
const double EP = 1e-;
const int MAXV = ;
const double PI = 3.14159265; /* 基本几何结构 */
struct POINT
{
double x;
double y;
POINT(double a=, double b=) { x=a; y=b;} //constructor
};
POINT operator - (POINT A,POINT B){return POINT(A.x-B.x,A.y-B.y);}
struct LINESEG
{
POINT s;
POINT e;
LINESEG(POINT a, POINT b) { s=a; e=b;}
LINESEG() { }
};
double multiply(POINT sp,POINT ep,POINT op)
{
return((sp.x-op.x)*(ep.y-op.y)-(ep.x-op.x)*(sp.y-op.y));
}
bool InsideConvexPolygon(int vcount,POINT polygon[],POINT q) // 可用于三角形!
{
POINT p;
LINESEG l;
int i;
p.x=;p.y=;
for(i=;i<vcount;i++) // 寻找一个肯定在多边形polygon内的点p:多边形顶点平均值
{
p.x+=polygon[i].x;
p.y+=polygon[i].y;
}
p.x /= vcount;
p.y /= vcount; for(i=;i<vcount;i++)
{
l.s=polygon[i];l.e=polygon[(i+)%vcount];
if(multiply(p,l.e,l.s)*multiply(q,l.e,l.s)<) /* 点p和点q在边l的两侧,说明点q肯定在多边形外 */
break;
}
return (i==vcount);
}
double Cross(POINT a,POINT b)
{
return a.x*b.y-a.y*b.x;
}
bool cmp1(POINT a,POINT b)
{
if(fabs(a.x-b.x)<EP)
return a.y<b.y;
return a.x<b.x;
}
int CH(POINT* p,int n,POINT* ch)
{
sort(p,p+n,cmp1);
int m=;
for(int i=;i<n;i++)
{
while(m>&&Cross(ch[m-]-ch[m-],p[i]-ch[m-])<=)m--;
ch[m++]=p[i];
}
int k=m;
for(int i=n-;i>=;i--)
{
while(m>k&&Cross(ch[m-]-ch[m-],p[i]-ch[m-])<=)m--;
ch[m++]=p[i];
}
if(n>)m--;
return m;
}
int N,tot;
POINT fin,pp[maxn],t[maxn],T[maxn];
int check(double x)
{
for(int i=;i<tot;i++)
T[i].x = t[i].x*x,T[i].y = t[i].y*x;
if(InsideConvexPolygon(tot,T,fin))return ;
return ;
}
int main()
{
memset(pp,,sizeof(pp));
memset(t,,sizeof(t));
memset(T,,sizeof(T));
double X=,Y=;
scanf("%d",&N);cin>>fin.x>>fin.y;
for(int i=;i<N;i++)
{
double x,y;
scanf("%lf%lf",&x,&y);
X = max(X,x);
Y = max(Y,y);
pp[i].x = x,pp[i].y = y;
}
pp[N].x = ,pp[N].y = ;
pp[N+].x = X,pp[N+].y = ;
pp[N+].x = ,pp[N+].y = Y;
N+=;
tot = CH(pp,N,t);
double l = ,r = 999990009.0;
for(int i=;i<=;i++)
{
double mid = (l+r)/2.0;
if(check(mid))r=mid;
else l=mid;
}
printf("%.15f\n",l);
}

Codeforces Round #335 (Div. 1) C. Freelancer's Dreams 计算几何的更多相关文章

  1. Codeforces Round #335 (Div. 1)--C. Freelancer's Dreams 线性规划对偶问题+三分

    题意:p, q,都是整数. sigma(Ai * ki)>= p, sigma(Bi * ki) >= q; ans = sigma(ki).输出ans的最小值 约束条件2个,但是变量k有 ...

  2. Codeforces Round #335 (Div. 2) B. Testing Robots 水题

    B. Testing Robots Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.codeforces.com/contest/606 ...

  3. Codeforces Round #335 (Div. 2) D. Lazy Student 构造

    D. Lazy Student Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/606/probl ...

  4. Codeforces Round #335 (Div. 2) C. Sorting Railway Cars 动态规划

    C. Sorting Railway Cars Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.codeforces.com/conte ...

  5. Codeforces Round #335 (Div. 2) A. Magic Spheres 水题

    A. Magic Spheres Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.codeforces.com/contest/606/ ...

  6. Codeforces Round #335 (Div. 2) D. Lazy Student 贪心+构造

    题目链接: http://codeforces.com/contest/606/problem/D D. Lazy Student time limit per test2 secondsmemory ...

  7. Codeforces Round #335 (Div. 2)

    水 A - Magic Spheres 这题也卡了很久很久,关键是“至少”,所以只要判断多出来的是否比需要的多就行了. #include <bits/stdc++.h> using nam ...

  8. Codeforces Round #335 (Div. 2) A. Magic Spheres 模拟

    A. Magic Spheres   Carl is a beginner magician. He has a blue, b violet and c orange magic spheres. ...

  9. Codeforces Round #335 (Div. 2) D. Lazy Student 贪心

    D. Lazy Student   Student Vladislav came to his programming exam completely unprepared as usual. He ...

随机推荐

  1. Spring工厂方式创建Bean实例

    创建Bean实例的方式: 1) 通过构造器(有参或无参) 方式: <bean id="" class=""/> 2) 通过静态工厂方法 方式: &l ...

  2. 解决oracle11g的ORA-12505问题

    今天在使用SQL Developer的时候连不上去,报ORA-12505错误,但是SQLPLUS可以连接. 检查服务名,是OracleServiceORCL,那SID应当就是orcl,但是使用该SID ...

  3. 5. Fragment详解

    onCreateView是Fragment生命周期方法中最重要的一个.因为在该 方法中会创建在Fragment中显示的View. public View onCreateView(LayoutInfl ...

  4. Linux环境Weblogic10g服务部署

    1.先安装XManager: 2.进入XShell,远程连接Linux主机后,按如下操作即可打开XManager配置WebLogic部署服务: [root@server36 bin]# cd /[ro ...

  5. C#轻量级企业事务 - TransactionScope

    using System; using System.Data.SqlClient; using System.Transactions; namespace SomeDBTransaction { ...

  6. navicat 或者workbench 无法连接127.0.0.1(61)的解决方法

    1.输入mysql -uroot 进入命令行模式, 2.输入"show variables like '%sock%';"查看sock文件所在位置 如: 3.配置客户端(以navi ...

  7. SQLyog Enterprise 8.14

    用户名:yunjian注册码:81f43d3dd20872b6 下载地址:SQLyog Enterprise 8.14

  8. CDH4.1基于Quorum-based Journaling的NameNode HA

    几个星期前, Cloudera发布了CDH 4.1最新的更新版本,这是第一个真正意义上的独立高可用性HDFS NameNode的hadoop版本,不依赖于特殊的硬件或外部软件.这篇文章从开发者的角度来 ...

  9. 转】MyEclipse使用总结——MyEclipse中配置WebLogic12c服务器

    原博文出自于:http://www.cnblogs.com/xdp-gacl/p/4142495.html 感谢! MyEclipse中配置WebLogic12c服务器的步骤如下: [Window]→ ...

  10. Quora 用了哪些技术(转)

    原文:http://dbanotes.net/arch/quora_tech.html 很多团队都在学习.研究 Quora .前段时间看到这篇 Quora’s Technology Examined  ...