POJ3009——Curling 2.0(DFS)
Curling 2.0
Description
On Planet MM-21, after their Olympic games this year, curling is getting popular. But the rules are somewhat different from ours. The game is played on an ice game board on which a square mesh is marked. They use only a single stone. The purpose of the game is to lead the stone from the start to the goal with the minimum number of moves.
Fig. 1 shows an example of a game board. Some squares may be occupied with blocks. There are two special squares namely the start and the goal, which are not occupied with blocks. (These two squares are distinct.) Once the stone begins to move, it will proceed until it hits a block. In order to bring the stone to the goal, you may have to stop the stone by hitting it against a block, and throw again.
Fig. 1: Example of board (S: start, G: goal)
The movement of the stone obeys the following rules:
At the beginning, the stone stands still at the start square.
The movements of the stone are restricted to x and y directions. Diagonal moves are prohibited.
When the stone stands still, you can make it moving by throwing it. You may throw it to any direction unless it is blocked immediately(Fig. 2(a)).
Once thrown, the stone keeps moving to the same direction until one of the following occurs:
The stone hits a block (Fig. 2(b), (c)).
The stone stops at the square next to the block it hit.
The block disappears.
The stone gets out of the board.
The game ends in failure.
The stone reaches the goal square.
The stone stops there and the game ends in success.
You cannot throw the stone more than 10 times in a game. If the stone does not reach the goal in 10 moves, the game ends in failure.
Fig. 2: Stone movements
Under the rules, we would like to know whether the stone at the start can reach the goal and, if yes, the minimum number of moves required.
With the initial configuration shown in Fig. 1, 4 moves are required to bring the stone from the start to the goal. The route is shown in Fig. 3(a). Notice when the stone reaches the goal, the board configuration has changed as in Fig. 3(b).
Fig. 3: The solution for Fig. D-1 and the final board configuration
Input
The input is a sequence of datasets. The end of the input is indicated by a line containing two zeros separated by a space. The number of datasets never exceeds 100.
Each dataset is formatted as follows.
the width(=w) and the height(=h) of the board
First row of the board
...
h-th row of the board
The width and the height of the board satisfy: 2 <= w <= 20, 1 <= h <= 20.
Each line consists of w decimal numbers delimited by a space. The number describes the status of the corresponding square.
0 vacant square
1 block
2 start position
3 goal position
The dataset for Fig. D-1 is as follows:
6 6
1 0 0 2 1 0
1 1 0 0 0 0
0 0 0 0 0 3
0 0 0 0 0 0
1 0 0 0 0 1
0 1 1 1 1 1
Output
For each dataset, print a line having a decimal integer indicating the minimum number of moves along a route from the start to the goal. If there are no such routes, print -1 instead. Each line should not have any character other than this number.
Sample Input
2 1
3 2
6 6
1 0 0 2 1 0
1 1 0 0 0 0
0 0 0 0 0 3
0 0 0 0 0 0
1 0 0 0 0 1
0 1 1 1 1 1
6 1
1 1 2 1 1 3
6 1
1 0 2 1 1 3
12 1
2 0 1 1 1 1 1 1 1 1 1 3
13 1
2 0 1 1 1 1 1 1 1 1 1 1 3
0 0
Sample Output
1
4
-1
4
10
-1
题目大意:
就是要求把一个冰壶从起点“2”用最少的步数移动到终点“3”
其中0为移动区域,1为石头区域,冰壶一旦想着某个方向运动就不会停止,也不会改变方向(想想冰壶在冰上滑动)
除非冰壶撞到石头1 或者 到达终点 3
撞到石头后,石头会碎掉,并且冰壶停在石头前面一格。
解题思路:
DFS。
Code:
/*************************************************************************
> File Name: poj3009.cpp
> Author: Enumz
> Mail: 369372123@qq.com
> Created Time: 2014年10月26日 星期日 21时37分15秒
************************************************************************/
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<list>
#include<queue>
#include<stack>
//#include<map>
#include<set>
#include<algorithm>
#include<cmath>
#define MAXN 50
using namespace std;
struct Point
{
int x,y;
} begin,end,dir[];
int map[MAXN][MAXN];
int N,M;
int cnt=;
bool dfs(Point begin,Point end,int step)
{
if (step>=) return false;
Point tmp;
for (int i=; i<=; i++)
{
tmp=begin;
if (map[tmp.x+dir[i].x][tmp.y+dir[i].y]!=)
{
while ()
{
tmp.x+=dir[i].x;
tmp.y+=dir[i].y;
if (tmp.x==end.x&&tmp.y==end.y)
{
cnt=cnt>step+?step+:cnt;
return true;
}
if (map[tmp.x+dir[i].x][tmp.y+dir[i].y]==)
break;
}
if (tmp.x+dir[i].x<=M&&tmp.x+dir[i].x>=
&&tmp.y+dir[i].y<=N&&tmp.y+dir[i].y>=)
{
map[tmp.x+dir[i].x][tmp.y+dir[i].y]=;
dfs(tmp,end,step+);
map[tmp.x+dir[i].x][tmp.y+dir[i].y]=;
}
}
}
return false;
}
void init()
{
dir[].x=,dir[].y=;
dir[].x=,dir[].y=-;
dir[].x=,dir[].y=;
dir[].x=-,dir[].y=;
}
int main()
{
init();
while (cin>>N>>M)
{
if (!N&&!M) break;
for (int i=; i<=; i++)
for (int j=; j<=; j++)
map[i][j]=;
for (int i=; i<=M; i++)
for (int j=; j<=N; j++)
{
scanf("%d",&map[i][j]);
if (map[i][j]==)
{
begin.x=i;
begin.y=j;
map[i][j]=;
}
if (map[i][j]==)
{
end.x=i;
end.y=j;
}
}
int step=;
cnt=;
dfs(begin,end,step);
if (cnt!=) cout<<cnt<<endl;
else cout<<"-1"<<endl;
}
return ;
}
POJ3009——Curling 2.0(DFS)的更多相关文章
- POJ3009 Curling 2.0(DFS)
迷宫问题求最短路. 略有不同的是假设不碰到石头的话会沿着一个方向一直前进,出界就算输了.碰到石头,前方石头会消失,冰壶停在原地. 把这个当作状态的转移. DFS能够求出其最小操作数. #include ...
- POJ-3009 Curling 2.0 (DFS)
Description On Planet MM-21, after their Olympic games this year, curling is getting popular. But th ...
- poj3009 Curling 2.0 (DFS按直线算步骤)
Curling 2.0 Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 14563 Accepted: 6080 Desc ...
- 【POJ】3009 Curling 2.0 ——DFS
Curling 2.0 Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 11432 Accepted: 4831 Desc ...
- Curling 2.0(dfs回溯)
Curling 2.0 Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 15567 Accepted: 6434 Desc ...
- poj3009 Curling 2.0(很好的题 DFS)
https://vjudge.net/problem/POJ-3009 做完这道题,感觉自己对dfs的理解应该又深刻了. 1.一般来说最小步数都用bfs求,但是这题因为状态记录很麻烦,所以可以用dfs ...
- POJ3009 Curling 2.0(DFS)
题目链接. 分析: 本题BFS A不了. 00100 00001 01020 00000 00010 00010 00010 00010 00030 对于这样的数据,本来应当是 5 步,但bfs却 4 ...
- Curling 2.0(dfs)
Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8795 Accepted: 3692 Description On Pl ...
- POJ3009 Curling 2.0
正式做POJ的第一题,做出来后又看了别人的代码,就又完善了一下,也通过了.参考 http://blog.sina.com.cn/s/blog_4abcd9bc0100phzb.html 改了之后觉得写 ...
随机推荐
- 1. opencv的初体验
http://guoming.me/opencv-config 这篇文章有讲解opencv的安装与配置 一些常用库 opencv_core249d.lib opencv_imgproc249d.li ...
- linux c 分解质因数
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <math.h> ...
- MySQL 通过mysql_config_editor更安全的登录数据库
在5.6版本中,MySQL可以通过mysql_config_editor登录数据库,变得更加安全. [root@hank-yoon ~]# mysql_config_editor set --logi ...
- 【转载】MySQL 日志 undo | redo
本文是介绍MySQL数据库InnoDB存储引擎重做日志漫游 00 – Undo LogUndo Log 是为了实现事务的原子性,在MySQL数据库InnoDB存储引擎中,还用Undo Log来实现多版 ...
- Object.keys()
Object.keys(obj),返回一个数组,数组里是该obj可被枚举的所有属性名.请看示例: 示例一: function Pasta(grain, width, shape) { this.gra ...
- MVC学习系列——ModelBinder扩展
在MVC系统中,我们接受数据,运用的是ModelBinder 的技术. MVC学习系列——ActionResult扩展在这个系列中,我们自定义了XmlResult的返回结果. 那么是不是意味着能POS ...
- jQuery 单选按钮切换
html代码片段一: <div class="row"> <div class="col-sm-12"> <label for=& ...
- iOS 进阶 第十天(0410)
0410 在tableViewCell之间添加一根线,通栏 iOS应用数据存储的常用方式 plist存储文件 plist读取文件 下面是plist存储读取的图解: 注意:plist只能存储常见的属性. ...
- mysql_fetch_row,mysql_fetch_array,mysql_fetch_assoc的区别
<?php $link=mysql_connect('localhost','root',”); mysql_select_db('abc',$link); $sql = “select * f ...
- Careercup - Facebook面试题 - 4922014007558144
2014-05-01 02:13 题目链接 原题: Design question: Say you have hacked in to a network and can deploy your b ...