HDU-4035 Maze
http://acm.hdu.edu.cn/showproblem.php?pid=4035
树上的概率dp。
MazeTime Limit: 2000/1000 MS (Java/Others) Memory Limit: 65768/65768 K (Java/Others) Total Submission(s): 1626 Accepted Submission(s): 608 Special Judge Problem Description
When wake up, lxhgww find himself in a huge maze.
The maze consisted by N rooms and tunnels connecting these rooms. Each pair of rooms is connected by one and only one path. Initially, lxhgww is in room 1. Each room has a dangerous trap. When lxhgww step into a room, he has a possibility to be killed and restart from room 1. Every room also has a hidden exit. Each time lxhgww comes to a room, he has chance to find the exit and escape from this maze. Unfortunately, lxhgww has no idea about the structure of the whole maze. Therefore, he just chooses a tunnel randomly each time. When he is in a room, he has the same possibility to choose any tunnel connecting that room (including the tunnel he used to come to that room). What is the expect number of tunnels he go through before he find the exit? Input
First line is an integer T (T ≤ 30), the number of test cases.
At the beginning of each case is an integer N (2 ≤ N ≤ 10000), indicates the number of rooms in this case. Then N-1 pairs of integers X, Y (1 ≤ X, Y ≤ N, X ≠ Y) are given, indicate there is a tunnel between room X and room Y. Finally, N pairs of integers Ki and Ei (0 ≤ Ki, Ei ≤ 100, Ki + Ei ≤ 100, K1 = E1 = 0) are given, indicate the percent of the possibility of been killed and exit in the ith room. Output
For each test case, output one line “Case k: ”. k is the case id, then the expect number of tunnels lxhgww go through before he exit. The answer with relative error less than 0.0001 will get accepted. If it is not possible to escape from the maze, output “impossible”.
Sample Input
3
3 1 2 1 3 0 0 100 0 0 100 3 1 2 2 3 0 0 100 0 0 100 6 1 2 2 3 1 4 4 5 4 6 0 0 20 30 40 30 50 50 70 10 20 60 Sample Output
Case 1: 2.000000
Case 2: impossible Case 3: 2.895522 |
http://www.cnblogs.com/kuangbin/archive/2012/10/03/2711108.html
牛人的博客思路
dp求期望的题。
题意:
有n个房间,由n-1条隧道连通起来,实际上就形成了一棵树,
从结点1出发,开始走,在每个结点i都有3种可能:
1.被杀死,回到结点1处(概率为ki)
2.找到出口,走出迷宫 (概率为ei)
3.和该点相连有m条边,随机走一条
求:走出迷宫所要走的边数的期望值。 设 E[i]表示在结点i处,要走出迷宫所要走的边数的期望。E[1]即为所求。 叶子结点:
E[i] = ki*E[1] + ei*0 + (1-ki-ei)*(E[father[i]] + 1);
= ki*E[1] + (1-ki-ei)*E[father[i]] + (1-ki-ei); 非叶子结点:(m为与结点相连的边数)
E[i] = ki*E[1] + ei*0 + (1-ki-ei)/m*( E[father[i]]+1 + ∑( E[child[i]]+1 ) );
= ki*E[1] + (1-ki-ei)/m*E[father[i]] + (1-ki-ei)/m*∑(E[child[i]]) + (1-ki-ei); 设对每个结点:E[i] = Ai*E[1] + Bi*E[father[i]] + Ci; 对于非叶子结点i,设j为i的孩子结点,则
∑(E[child[i]]) = ∑E[j]
= ∑(Aj*E[1] + Bj*E[father[j]] + Cj)
= ∑(Aj*E[1] + Bj*E[i] + Cj)
带入上面的式子得
(1 - (1-ki-ei)/m*∑Bj)*E[i] = (ki+(1-ki-ei)/m*∑Aj)*E[1] + (1-ki-ei)/m*E[father[i]] + (1-ki-ei) + (1-ki-ei)/m*∑Cj;
由此可得
Ai = (ki+(1-ki-ei)/m*∑Aj) / (1 - (1-ki-ei)/m*∑Bj);
Bi = (1-ki-ei)/m / (1 - (1-ki-ei)/m*∑Bj);
Ci = ( (1-ki-ei)+(1-ki-ei)/m*∑Cj ) / (1 - (1-ki-ei)/m*∑Bj); 对于叶子结点
Ai = ki;
Bi = 1 - ki - ei;
Ci = 1 - ki - ei; 从叶子结点开始,直到算出 A1,B1,C1; E[1] = A1*E[1] + B1*0 + C1;
所以
E[1] = C1 / (1 - A1);
若 A1趋近于1则无解...
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int len,head[];
double A,B,C;
double k[],e[];
struct node
{
int now,next;
}tree[];
void add(int x,int y)
{
tree[len].now=y;
tree[len].next=head[x];
head[x]=len++;
}
void dfs(int root,int p)
{
int i,son,m=;
double a=,b=,c=,q;
for(i=head[root];i!=-;i=tree[i].next)
{
son=tree[i].now;
if(son==p)
{
continue;
}
dfs(son,root);
a+=A;
b+=B;
c+=C;
m++; } if(p != -)++m;
q=(-k[root]-e[root])/m;
A=(k[root]+q*a)/(-q*b);
B=q/(-q*b);
C=(-k[root]-e[root]+q*c)/(-q*b);
}
int main()
{
int t,n,a,b,j,i;
int x,y;
scanf("%d",&t);
for(j=;j<=t;j++)
{ len=;
memset(head,-,sizeof(head));
memset(e,,sizeof(e));
memset(k,,sizeof(k));
scanf("%d",&n);
for(i=;i<n;i++)
{
scanf("%d%d",&a,&b);
add(a,b);
add(b,a);
}
for(i=;i<=n;i++)
{
scanf("%d%d",&x,&y);
// printf("x=%d,y=%d\n",x,y);
k[i]=x/100.0;
e[i]=y/100.0;
// printf("k[i]=%lf,e[i]=%lf\n",k[i],e[i]);
}
dfs(,-);
if(-A<1e-)
printf("Case %d: impossible\n",j);
else
printf("Case %d: %lf\n",j,C/(-A));
}
return ;
}
HDU-4035 Maze的更多相关文章
- poj 2096 Collecting Bugs && ZOJ 3329 One Person Game && hdu 4035 Maze——期望DP
poj 2096 题目:http://poj.org/problem?id=2096 f[ i ][ j ] 表示收集了 i 个 n 的那个. j 个 s 的那个的期望步数. #include< ...
- HDU 4035 Maze 概率dp,树形dp 难度:2
http://acm.hdu.edu.cn/showproblem.php?pid=4035 求步数期望,设E[i]为在编号为i的节点时还需要走的步数,father为dfs树中该节点的父节点,son为 ...
- hdu 4035 Maze 概率DP
题意: 有n个房间,由n-1条隧道连通起来,实际上就形成了一棵树, 从结点1出发,开始走,在每个结点i都有3种可能: 1.被杀死,回到结点1处(概率为ki) ...
- HDU 4035 Maze(树形概率DP)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4035 题意:一棵树,从结点1出发,在每个结点 i 都有3种可能:(1)回到结点1 , 概率 Ki:(2 ...
- hdu 4035 Maze(期待更多经典的树DP)
Maze Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65768/65768 K (Java/Others) Total Submi ...
- HDU.4035.Maze(期望DP)
题目链接 (直接)设\(F(i)\)为在\(i\)点走出迷宫的期望步数.答案就是\(F(1)\). 令\(p_i=1-k_i-e_i\),表示\(i\)点沿着边走的概率:\(d_i=dgr[i]\), ...
- HDU 4035 Maze 概率DP 搜索
解题报告链接: http://www.cnblogs.com/kuangbin/archive/2012/10/03/2711108.html 先推公式,设计状态,令DP[i]表示在房间i退出要走步数 ...
- HDU 4035:Maze(概率DP)
http://acm.split.hdu.edu.cn/showproblem.php?pid=4035 Maze Special Judge Problem Description When w ...
- hdu 4035 2011成都赛区网络赛E 概率dp ****
太吊了,反正我不会 /* HDU 4035 dp求期望的题. 题意: 有n个房间,由n-1条隧道连通起来,实际上就形成了一棵树, 从结点1出发,开始走,在每个结点i都有3种可能: 1.被杀死,回到结点 ...
- hdu 5094 Maze 状态压缩dp+广搜
作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4092176.html 题目链接:hdu 5094 Maze 状态压缩dp+广搜 使用广度优先 ...
随机推荐
- 51Nod 有限背包计数问题 题解报告
首先这道题理论上是可以做到O(nlogn)的,因为OEIS上有一个明显可以用多项式乘法加速的式子 但是由于模数不是很兹磁,所以导致nlogn很难写 在这里说一下O(n*sqrt(n))的做法 首先我们 ...
- AndroidManifest.xml介绍一
下面是AndroidManifest.xml的简单介绍,直接上图! 一.manifest结点的属性介绍 二.application结点属性介绍 三.activity.intent-filter.use ...
- Tomcat就是个容器,一种软件
1.tomcat就是一个容器而已,一个软件,运行在java虚拟机. 2.tomcat是一种能接收http协议的软件,java程序猿自己也可以写出http解析的服务器啊. 3.tomcat支持servl ...
- HTML5入门九---Canvas画布
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...
- iOS UICollectionView简单使用
UICollectionView 和 UICollectionViewController 类是iOS6 新引进的API,用于展示集合视图,布局更加灵活,可实现多列布局,用法类似于UITableVie ...
- PowerDesigner技巧
原文:PowerDesigner技巧 1.PowerDesigner使用MySQL的auto_increment ◇问题描述: PD怎样能使主键id使用MySQL的auto_increment呢? ...
- 259. 3Sum Smaller
题目: Given an array of n integers nums and a target, find the number of index triplets i, j, k with 0 ...
- JCIFS是很不稳定的
我以前也试过这样登录失败,第二天就能登录成功了. JCIFS是很不稳定的. 如果是域登录可以这样 //DOMAIN_IP 域名服务(其实域名和域名服务器IP可以,不过用IP解析速度快很 ...
- Java API —— Math类
1.Math类概述 Math 类包含用于执行基本数学运算的方法,如初等指数.对数.平方根和三角函数. 2.成员变量 public static final doubl ...
- latex 三线表
LaTeX 处理三线表相当简单方便.用到的宏包主要是 booktabs .代码如下: 需要添加包:\usepackage{booktabs}. \documentclass{article} \use ...