2016计蒜之道复赛 百度地图的实时路况 floyd+cdq分治
链接:https://nanti.jisuanke.com/t/11217
奉上官方题解:
枚举 d(x , y , z) 中的 y,把 y 从这个图中删去,再求这时的全源最短路即可,使用 Floyd 算法来做上述过程。
Floyd 算法可以是一个增量的过程,虽然第一维一般都是从 1枚举到 k但是这个枚举的顺序并不影响最后的结果。
所以如果可以预处理出对于每个点 y,只剩 y 没有在 Floyd 的第一维枚举到的矩阵,这个矩阵的值就是不经过 y 点的全源最短路。
所以使用分治,每一次把点集拆成两半,先用前一半的点在 Floyd 算法中滚,再递归后一半点。
然后回溯,用后一半的点在 Floyd 算法里滚,递归前一半的点。这样每个只有一个点的状态得到的就是只有这个点没有在 Floyd 算法里滚的矩阵。
时间复杂度为 O(n^3logn)。
吐槽:在写这个题以前,cdq分治只写过三维偏序模板题,整体二分的题写的很少,以后要应该多写一些
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <string>
#include <stack>
#include <vector>
#include <map>
#include <queue>
#include <algorithm>
#include <utility>
using namespace std;
typedef long long LL;
const int N=;
const int INF=0x3f3f3f3f;
int dp[][N][N],n,mp[N][N];
LL ret;
void cpydp(int dep){
for(int i=;i<=n;++i)
for(int j=;j<=n;++j)
dp[dep][i][j]=dp[dep-][i][j];
}
void update(int dep,int l,int r){
for(int k=l;k<=r;++k)
for(int i=;i<=n;++i)
for(int j=;j<=n;++j)
if(dp[dep][i][j]>dp[dep][i][k]+dp[dep][k][j])
dp[dep][i][j]=dp[dep][i][k]+dp[dep][k][j];
}
void cdq(int dep,int l,int r){
if(l==r){
for(int i=;i<=n;++i)
for(int j=;j<=n;++j){
if(i==l||j==l)continue;
if(dp[dep][i][j]==INF)dp[dep][i][j]=-;
ret+=1ll*dp[dep][i][j];
}
return;
}
int m=l+r>>;
cpydp(dep+),update(dep+,m+,r);
cdq(dep+,l,m);
cpydp(dep+),update(dep+,l,m);
cdq(dep+,m+,r);
}
int main()
{
scanf("%d",&n);
for(int i=;i<=n;++i)
for(int j=;j<=n;++j){
scanf("%d",&dp[][i][j]);
if(dp[][i][j]==-)dp[][i][j]=INF;
}
cdq(,,n);
cout<<ret<<endl;
return ;
}
2016计蒜之道复赛 百度地图的实时路况 floyd+cdq分治的更多相关文章
- 2016计蒜之道复赛 百度地图的实时路况(Floyd 分治)
题意 题目链接 Sol 首先一个结论:floyd算法的正确性与最外层\(k\)的顺序无关(只要保证是排列即可) 我大概想到一种证明方式就是把最短路树上的链拿出来,不论怎样枚举都会合并其中的两段,所以正 ...
- 2016计蒜之道复赛 百度地图的实时路况 分治+Floyd
题目链接:https://nanti.jisuanke.com/t/A1108 这道题还挺有意思的.让我对Floyd的了解又加深了一点. 首先我们重新审视Floyd这三重循环到底有什么用?第一层是枚举 ...
- 2016计蒜之道复赛A 百度地图的实时路况
百度地图的实时路况功能相当强大,能方便出行的人们避开拥堵路段.一个地区的交通便捷程度就决定了该地区的拥堵情况.假设一个地区有 nnn 个观测点,编号从 111 到 nnn.定义 d(u,v,w)d(u ...
- 2016计蒜之道复赛 菜鸟物流的运输网络 网络流EK
题源:https://nanti.jisuanke.com/t/11215 分析:这题是一个比较经典的网络流模型.把中间节点当做源,两端节点当做汇,对节点进行拆点,做一个流量为 22 的流即可. 吐槽 ...
- 2016计蒜之道复赛B题:联想专卖店促销
题解 思路: 二分答案,设我们要check的值为x. 注意到每一个礼包都有,一个U盘,一个鼠标. 剩余的,分别为一个机械键盘,一个U盘,一个鼠标. 当礼包数目为x时,我们至多可以提供a-x个普通,b- ...
- 2018 计蒜之道复赛 贝壳找房魔法师顾问(并查集+dfs判环)
贝壳找房在遥远的传奇境外,找到了一个强大的魔法师顾问.他有 22 串数量相同的法力水晶,每个法力水晶可能有不同的颜色.为了方便起见,可以将每串法力水晶视为一个长度不大于 10^5105,字符集不大于 ...
- 2016计蒜之道初赛第四场A
在每年的淘宝“双十一”时,访问量都会暴涨,服务器的请求会被流量分配程序按照一定策略,分发给不同的进程去处理.有一类请求,有两个进程可以接受分发的请求,其中一个进程所在服务器的配置.网络传输性能等都要优 ...
- 2016 计蒜之道 初赛 第一场 D 青云的机房组网方案 (虚树)
大意: 给定树, 点$i$的点权为$a_i$, 求$\sum\limits_{a_i \perp a_j}dis(i,j)$ 中等难度可以枚举每条边的贡献, 维护子树内每个数出现次数$a$, 转化为求 ...
- 2019 计蒜之道 复赛 E. 撑起信息安全“保护伞” (贪心,构造,规律)
为了给全球小学员打起信息安全"保护伞",VIPKID 还建立了一套立体化的安全防御体系,7 \times 247×24 小时持续安全监控与应急响应等多项联动,具备业界最高级别的数据 ...
随机推荐
- POJ3176Cow Bowling
http://poj.org/problem?id=3176 题意:就是一个数塔的问题,属于最简单的动态规划题了吧,数塔从上到下只能找它下面的和它下面的右边的那一个想加,加到最后一行,看加哪个数可以保 ...
- hdu 1753 大明A+B
题目:http://acm.hdu.edu.cn/showproblem.php?pid=1753 容易出错的事例: 0.1 0.2 1.88 22.22 1 0.01 大概出错的几个点,做久了思维根 ...
- 华为3C抢购难度
上周小米2S降价到1299买了一个,今天突然想体验一下抢购红米和3C的难度.万一抢到了,拿到手机市场贵100块钱卖掉,然后可以请女神吃个饭~~~哈哈哈哈! 结果确实不怎么好抢.刚刚试了一下3C: 验证 ...
- mysql外键级联更新删除
MySQL支持外键的存储引擎只有InnoDB,在创建外键的时候,要求父表必须有对应的索引,子表在创建外键的时候也会自动创建对应的索引.在创建索引的时候,可以指定在删除.更新父表时,对子表进行的相应操作 ...
- java -version
- IntelliJ IDEA像Eclipse一样打开多个项目
原文:http://blog.csdn.net/zht666/article/details/47831893 我们做项目实际中经常会遇到这样的情况,创建一个common项目(Maven项目)作为公用 ...
- 1401 - Remember the Word
注意到单词的长度最长100,其实最糟糕复杂度应该能到O(300005*100),需要注意的是在字典树上匹配单词时,一旦不匹配,则后面的就不会匹配,需要break出来(这个害我TLE查了半天,日!),还 ...
- Android zxing连续扫描
initCamera(); if (mHandler != null) mHandler.restartPreviewAndDecode(); 在扫描完毕后执行这3句即可. 说明: 1.扫描处理方法为 ...
- Java连接oracle数据库的OCI和THIN
使用jdbc连接上oracle有两种方法: 1. 使用thin连接 由于thin驱动都是纯Java代码,并且使用TCP/IP技术通过java的Socket连接上Oracle数据库,所以thin驱动是与 ...
- Android开发之事件分发和Listener
参考:http://blog.csdn.net/zhongkejingwang/article/details/38141719 http://blog.csdn.net/zhongkejingwan ...