题目

1.区域和检索:

简单题,前缀和方法

乍一看就觉得应该用前缀和来做,一个数组多次查询。

实现方法: 新建一个private数组prefix_sum[i],用来存储nums前i个数组的和

需要找区间和的时候直接通过prefix_sum[j]-prefix[i-1]即可得到从[i,j]区间的和,当i是0的时候需要特殊处理以防数组越界。

 class NumArray {
public:
NumArray(vector<int> nums) {
prefix_sum.reserve(nums.size());
int sum = ;
for(int i: nums) {
sum+=i;
prefix_sum.push_back(sum);
}
} int sumRange(int i, int j) {
if(i == ) return prefix_sum[j];
return prefix_sum[j]-prefix_sum[i-];
}
private:
vector<int> prefix_sum;
};

那我们来看一下,若是方阵的情况怎么办?

2.二维区域和检索

解决方法一样,不同点在于如何求和和如何通过前缀和获得解。

二维的从(row1,col1)~(row2,col2)的求和情况应该是

dp[row2][col2]+dp[row1-1][col1-1]-dp[row2][col1-1]-dp[row1-1][col2]

这个需要我们的一点点初中数学的知识,加的dp[row1][col1-1]是被重复删去的区间,所以要加回来。

同样,要避开那些边界特殊情况,直接用if条件筛掉就行了,细节观察注释。

 class NumMatrix {
private: vector<vector<int>>dp;
public:
NumMatrix(vector<vector<int>> matrix) {
dp=matrix;
int n=matrix.size();
if(n>){
/*求和,先从左往右叠加*/
int m=matrix[].size();
for(int i=;i<n;i++)
for(int j=;j<m;j++)
dp[i][j]+=dp[i][j-];
/*再从上往下叠加*/
for(int i=;i<n;i++)
for(int j=;j<m;j++)
dp[i][j]+=dp[i-][j];
} } int sumRegion(int row1, int col1, int row2, int col2) {
/*最特殊的情况:row1=0,col1=0*/
if(row1==&&col1==)return dp[row2][col2];
/*特殊情况1:row1=0但col1!=0*/
if(row1==){
return dp[row2][col2]-dp[row2][col1-];
}
/*特殊情况2:row1!=0但col1=0*/
else if(col1==){
return dp[row2][col2]-dp[row1-][col2];
}
/*正常情况:row1不等于0同时colq也不等于0*/
else{
return dp[row2][col2]+dp[row1-][col1-]-dp[row2][col1-]-dp[row1-][col2];
}
}
}; /**
* Your NumMatrix object will be instantiated and called as such:
* NumMatrix obj = new NumMatrix(matrix);
* int param_1 = obj.sumRegion(row1,col1,row2,col2);
*/

[Leetcode]303.区域和检索&&304.二维区域和检索的更多相关文章

  1. Java实现 LeetCode 304 二维区域和检索 - 矩阵不可变

    304. 二维区域和检索 - 矩阵不可变 给定一个二维矩阵,计算其子矩形范围内元素的总和,该子矩阵的左上角为 (row1, col1) ,右下角为 (row2, col2). Range Sum Qu ...

  2. Leetcode 304.二维区域和检索-矩阵不可变

    二维区域和检索 - 矩阵不可变 给定一个二维矩阵,计算其子矩形范围内元素的总和,该子矩阵的左上角为 (row1, col1) ,右下角为 (row2, col2). 上图子矩阵左上角 (row1, c ...

  3. [LeetCode] Range Sum Query 2D - Mutable 二维区域和检索 - 可变

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  4. [LeetCode] Range Sum Query 2D - Immutable 二维区域和检索 - 不可变

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  5. Leetcode之二分法专题-240. 搜索二维矩阵 II(Search a 2D Matrix II)

    Leetcode之二分法专题-240. 搜索二维矩阵 II(Search a 2D Matrix II) 编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target.该矩阵 ...

  6. [LeetCode] 304. Range Sum Query 2D - Immutable 二维区域和检索 - 不可变

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  7. LeetCode 304. Range Sum Query 2D - Immutable 二维区域和检索 - 矩阵不可变(C++/Java)

    题目: Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper ...

  8. 领扣(LeetCode)二维区域和检索 个人题解

    给定一个二维矩阵,计算其子矩形范围内元素的总和,该子矩阵的左上角为 (row1, col1) ,右下角为 (row2, col2). 上图子矩阵左上角 (row1, col1) = (2, 1) ,右 ...

  9. 304 Range Sum Query 2D - Immutable 二维区域和检索 - 不可变

    给定一个二维矩阵,计算其子矩形范围内元素的总和,该子矩阵的左上角为 (row1, col1) ,右下角为 (row2, col2). 上图子矩阵左上角 (row1, col1) = (2, 1) ,右 ...

随机推荐

  1. 微信小程序之跨界面传参

    微信小程序在两个之间传参类似js传递url拼接参数,举个例子来说吧 input自己设置参数 //index.wxml <form bindsubmit="formSubmit" ...

  2. jquery的call()和apply()方法

    call方法: 语法:call([thisObj[,arg1[, arg2[,   [,.argN]]]]]) 定义:调用一个对象的一个方法,以另一个对象替换当前对象. 说明: call 方法可以用来 ...

  3. 阿里ETL工具datax学习(一)

    阿里云开源离线同步工具DataX3.0介绍 一. DataX3.0概览 ​ DataX 是一个异构数据源离线同步工具,致力于实现包括关系型数据库(MySQL.Oracle等).HDFS.Hive.Ma ...

  4. plsql Developer 登录oracle出现 initialization error

    plsql Developer 登录oracle出现 initialization error 原因:plsql没有64位的,32位的plsql连接64位的oracle才会报错 解决方案:到oracl ...

  5. 解决编译错误:cc: Internal error: Killed (program cc1)

    错误现象: cc: Internal error: Killed (program cc1) ... 大体上是因为内存不足,临时使用交换分区来解决吧 sudo mkswap /swapfile sud ...

  6. silverlight导出图片文件

    新建一个Silverlight应用程序,添加下面两个控件: image控件:image1: Button控件:Click="Button1_Click"; code-Behind代 ...

  7. 如何比较两个xml 的异同

    http://www.xmlunit.org/ <dependency>     <groupId>org.xmlunit</groupId>     <ar ...

  8. currentTarget

    定义和用法 currentTarget 事件属性返回其监听器触发事件的节点,即当前处理该事件的元素.文档或窗口. 在捕获和起泡阶段,该属性是非常有用的,因为在这两个节点,它不同于 target 属性. ...

  9. python之基础1

    一.python介绍 介绍 python的创始人为吉多·范罗苏姆(Guido van Rossum).1989年的圣诞节期间,Guido开始写能够解释Python语言语法的解释器.Python这个名字 ...

  10. shell 命令之 jps

    中华石衫老师说过,java是一个生态,几乎所有框架都对java 有很好的支持. 正是这句话,让我坚定了持续学习java的信念. 说回jps,jps是java 提供的,功能等于 ps -ef | gre ...