题目链接

Problem Description

国庆期间,省城HZ刚刚举行了一场盛大的集体婚礼,为了使婚礼进行的丰富一些,司仪临时想出了有一个有意思的节目,叫做"考新郎",具体的操作是这样的:

首先,给每位新娘打扮得几乎一模一样,并盖上大大的红盖头随机坐成一排;

然后,让各位新郎寻找自己的新娘.每人只准找一个,并且不允许多人找一个.

最后,揭开盖头,如果找错了对象就要当众跪搓衣板...

看来做新郎也不是容易的事情...

假设一共有N对新婚夫妇,其中有M个新郎找错了新娘,求发生这种情况一共有多少种可能.

Input

输入数据的第一行是一个整数C,表示测试实例的个数,然后是C行数据,每行包含两个整数N和M(1<M<=N<=20)。

Output

对于每个测试实例,请输出一共有多少种发生这种情况的可能,每个实例的输出占一行。

Sample Input

2

2 2

3 2

Sample Output

1

3

分析:

首先对于n个新郎里面有m个人来进行选择,就是一个简单的组合问题,但是如何保证这些人选的都是错误的呢,就要用到错排公式。

第一步,“错排” 1 号元素(将 1 号元素排在第 2 至第 n 个位置之一),有 n - 1 种方法。

第二步,“错排”其余 n - 1 个元素,按如下顺序进行。视第一步的结果,若 1 号元素落在第 k 个位置,第二步就先把 k 号元素“错排”好, k 号元素的不同排法将导致两类不同的情况发生:

( 1 ) k 号元素排在第 1 个位置,留下的 n - 2 个元素在与它们的编号集相等的位置集上“错排”,有 f(n -2) 种方法;

( 2 ) k 号元素不排第 1 个位置,这时可将第 1 个位置“看成”第 k 个位置,于是形成(包括 k 号元素在内的) n - 1 个元素的“错排”,有 f(n - 1) 种方法。

据加法原理,完成第二步共有 f(n - 2)+f(n - 1) 种方法。

错排公式为:f [i ] =(i-1)*( f [ i-1 ] + f [ i-2 ] )

通式 : f(n)=n! (1/2!-1/3!+······+(-1)^n/n!)

代码:

#include<stdio.h>
#include<iostream>
#include<algorithm>
using namespace std;
int n,m;
long long int a[55];
void fun1()//错排公式
{
a[1]=0;
a[2]=1;
for(long long int i=3; i<=20; i++)
a[i]=(i-1)*(a[i-2]+a[i-1]);
}
long long int calculate(int n,int m)//计算组合数
{
long long int ans1=1;
for(int i=n; i>m; i--)
ans1*=i;
long long int ans2=1;
for(int i=2; i<=n-m; i++)
ans2*=i;
return ans1/ans2;
}
int main()
{
int t;
fun1();
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
printf("%lld\n",calculate(n,m)*a[m]);
}
return 0;
}

HDU 2049 不容易系列之(4)——考新郎 (错排+组合)的更多相关文章

  1. hdu 2049 不容易系列之(4)——考新郎 (错排递推)

    当n个编号元素放在n个编号位置,元素编号与位置编号各不对应的方法数用M(n)表示,那么M(n-1)就表示n-1个编号元素放在n-1个编号位置,各不对应的方法数,其它类推. 第一步,把第n个元素放在一个 ...

  2. hdu2049 不容易系列之(4)——考新郎 错排+组合 一共有N对新婚夫妇,N个新娘随机坐成一排,每个新郎只能选一个, 其中有M个新郎找错了新娘,求发生这种情况一共有多少种可能.

    不容易系列之(4)——考新郎 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)To ...

  3. [HDU 2049] 不容易系列之(4)——考新郎 (错排问题)

    不容易系列之(4)——考新郎 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2049 题目大意: 有N对新婚夫妇,其中所有的新娘站成一列,都盖上了红布. ...

  4. hdu 2049 不easy系列之(4)——考新郎

    不easy系列之(4)--考新郎 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  5. HDU 2049 不容易系列之(4)——考新郎 (递推,含Cmn公式)

    不容易系列之(4)——考新郎 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)To ...

  6. HDU2049 不容易系列之(4)考新郎 —— 错排

    题目链接:https://vjudge.net/problem/HDU-2049 不容易系列之(4)——考新郎 Time Limit: 2000/1000 MS (Java/Others)    Me ...

  7. E - 不容易系列之(4)――考新郎 错排数公式

    国庆期间,省城HZ刚刚举行了一场盛大的集体婚礼,为了使婚礼进行的丰富一些,司仪临时想出了有一个有意思的节目,叫做"考新郎",具体的操作是这样的:  首先,给每位新娘打扮得几乎一模一 ...

  8. hdu 2049 不容易系列之(4)——考新郎

    在本博AC代码中,求CNM用的是Anm/amm没用阶乘的形式,两者皆可 #include <stdio.h> int main(void) { long long a,b,larr[21] ...

  9. HDU 2049 不容易系列之(4)——考新郎( 错排 )

    链接:传送门 思路:错排水题,从N个人中选出M个人进行错排,即 C(n,m)*d[m] 补充:组合数C(n,m)能用double计算吗?第二部分有解释 Part 1. 分别求出来组合数的分子和分母然后 ...

随机推荐

  1. petapoco 对存储过程的扩展 干货

    好久没发表文章了.心血来潮,简单的介绍下这次工作中的问题. 项目中运用了Petapoco,可是petapoco对存储过程的支持不够好.或者说对于某些特殊场景,petapoco的sql支持度有限. 比如 ...

  2. C++ new和delete 堆和栈

    一.new和delete基本用法 程序开发中内存的动态分配与管理永远是一个让C++开发者头痛的问题,在C中,一般是通过malloc和free来进行内存分配和回收的,在C++中,new和delete已经 ...

  3. BugPhobia开发篇章:Beta阶段第VI次Scrum Meeting

    0x01 :Scrum Meeting基本摘要 Beta阶段第六次Scrum Meeting 敏捷开发起始时间 2015/12/18 00:00 A.M. 敏捷开发终止时间 2015/12/18 23 ...

  4. navicat连接mysql报10061错

    可能原因:mysql服务未启动 解决办法:进入到计算机管理,找到服务,然后找到mysql服务,并启动该服务

  5. Beta阶段冲刺-5

    一. 每日会议 1. 照片 2. 昨日完成工作 3. 今日完成工作 4. 工作中遇到的困难 杨晨露:现在我过的某种意义上挺滋润的,没啥事了都.......咳,困难就是前端每天都在想砸电脑,我要怎么阻止 ...

  6. 淘宝店铺模板开发SDK2.0下载安装图文教程

    使用TortoiseSVN Checkout TAE SDK2.0 废话少说,切入主题: 1.在http://tortoisesvn.net/downloads.html上下载TortoiseSVN ...

  7. Windows 防火墙出站 入站规则简单说明

    1. Windows防火墙其实比linux的iptabels 要好用一些. 打开设置方式: 运行->输入control即可 选择系统和安全 2.win2019 以及改名字了 现在是 window ...

  8. Windows下多线程编程(二)

    线程的分类 1.     有消息循环线程 MFC中有用户界面线程,从CWinThread派生出一个新的类作为UI线程类CUIThread,然后调用AfxBeginthread(RUNTIME_CLAS ...

  9. Qt开发之Hello Qt及学习小技巧

    创建第一个Qt程序的简单流程 如果安装了andriod或ios的版本也会显示出来,这里只显示了桌面端的 一个项目文件代码结构如下: 如下图可直接编辑label里的文字内容: 运行结果:(快捷键ctrl ...

  10. Java之字节流操作-复制文件

    package test_demo.fileoper; import java.io.FileInputStream; import java.io.FileOutputStream; import ...