UVa Dropping Balls
题目链接:
https://cn.vjudge.net/problem/UVA-679
/*
问题
输入完全二叉树的层数D和有几个小球滚落,计算最后一个小球落入的叶子结点的小号。 解题思路
直接模拟超时,所以想想其他的办法。看看能不能直接计算最后一个小球的路线,可以知道前两个球必然是一个落入左子树,
一个落入右子树,那么对于给出的第I个编号的小球,如果I是奇数,它就是往左走的第(I+1)/2个小球,当I是偶数的时候,
它就是往右走的第I/2个小球。
*/
#include<cstdio>
int main()
{
//freopen("E:\\testin.txt","r",stdin);
int t,D,I;
while(scanf("%d",&t) == && t != -){
while(t--){
scanf("%d%d",&D,&I);
int k=;
for(int i=;i<D-;i++){
if(I&){
k =k * ;
I=(I+)/;
}
else{
k = k*+;
I = I / ;
}
}
printf("%d\n",k);
}
}
return ;
}
UVa Dropping Balls的更多相关文章
- UVA.679 Dropping Balls (二叉树 思维题)
UVA.679 Dropping Balls (二叉树 思维题) 题意分析 给出深度为D的完全二叉树,按照以下规则,求第I个小球下落在那个叶子节点. 1. 默认所有节点的开关均处于关闭状态. 2. 若 ...
- UVA 679 Dropping Balls 由小见大,分析思考 二叉树放小球,开关翻转,小球最终落下叶子编号。
A number of K balls are dropped one by one from the root of a fully binary tree structure FBT. Each ...
- Dropping Balls (二叉树+思维)
Dropping Balls A number of K balls are dropped one by one from the root of a fully binary tree st ...
- UVa 679 Dropping Balls (例题 6-6)
传送门:https://uva.onlinejudge.org/external/6/p679.pdf 题意:在一颗结点带开关的完全二叉树上扔球,初始时开关为关闭状态,树的深度为D(1 <= D ...
- Dropping Balls UVA - 679
A number of K balls are dropped one by one from the root of a fully binary tree structure FBT. Eac ...
- Uva 679 Dropping Balls
这道题如果模拟着来写,思路很简单 #include <iostream> #include <cstring> using namespace std; int T,D,I,c ...
- Uva 679 Dropping Balls (模拟/二叉树的编号)
题意:有一颗二叉树,深度为D,所有节点从上到下从左到右编号为1,2,3.....在结点一处放一个小球,每个节点是一个开关,初始全是关闭的,小球从顶点落下,小球每次经过开关就会把它的状态置反,现在问第k ...
- UVa 679 - Dropping Balls【二叉树】【思维题】
题目链接 题目大意: 小球从一棵所有叶子深度相同的二叉树的顶点开始向下落,树开始所有节点都为0.若小球落到节点为0的则往左落,否则向右落.并且小球会改变它经过的节点,0变1,1变0.给定树的深度D和球 ...
- 小球下落(Dropping Balls, Uva 679)
题目描述 有一棵二叉树,最大深度为D,且所有的叶子深度都相同.所有结点从上到下从左到右编号为1,2,3,-,2eD-1.在结点1处放一个小球,它会往下落.每个结点上都有一个开关,初始全部关闭,当每次有 ...
随机推荐
- 方案dp。。
最近经常做到组合计数的题目,每当看到这种题目第一反应总是组合数学,然后要用到排列组合公式,以及容斥原理之类的..然后想啊想,最后还是不会做.. 但是比赛完之后一看,竟然是dp..例如前几天的口号匹配求 ...
- AngularJS 杂项知识点
1.要用ngChange要同时使用ngModel,下拉选择获取当前选中值. 2.打包代替动态加载(js文件) requirejs真正的价值在于模块化,不是动态加载,angularjs本身有模块化机制, ...
- Redis 5.0 安装
下载安装RedisServer mkdir –p /data/download && cd /data/download wget http://download.redis.io/r ...
- WPF ListBox的进阶使用(一)
公司项目有个需求,UI界面支持动态平均分割界面,想了想便想到用ListBox来实现,用UniformGrid作为ListBox的ItemsPanelTemplate,通过动态改变UniformGrid ...
- IE9的「console未被定义」错误
IE从IE8+才支持console物件,但如上图所示,网页明明是IE9标准模式,为什么IE9却说console物件不存在? 但进行侦错,console.log()却又正常! 原因: IE8/IE9要先 ...
- [leetcode.com]算法题目 - Restore IP Addresses
Given a string containing only digits, restore it by returning all possible valid IP address combina ...
- django 中 Oauth2 实现第三方登陆
django 中 Oauth2 实现第三方登陆 python网站第三方登录,social-auth-app-django模块, social-auth-app-django模块是专门用于Django的 ...
- 配置kali linux
在7月底的时候,安全加介绍Fireeye出品的 免费恶意软件分析工具FlareVM,还可进行逆向工程和渗透测试 .今天是看到绿盟科技的一篇介绍Kali Linux配置的文章,这个工具也进入了 渗透测试 ...
- 《Linux-基础篇笔记》 Vim编辑器(二)
Linux图形化界面下的文本编辑器 gedit . libre office . evince PDF阅读器 ①gedit是一个GNOME桌面环境下兼容UTF-8的文本编辑器.它使用GTK+编写而成, ...
- 网络基础、ftp任务(进度条、计算文件大小、断点续传、搭建框架示例)
一.网络基础 1.端口,是什么?为什么要有端口? 端口是为了将同一个电脑上的不同程序进行隔离. IP是找电脑:端口是找电脑上的应用程序: 端口范围:1 – 65535 : 1 - 1024 不要 ...