The Perfect Stall
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 23911   Accepted: 10640

Description

Farmer John completed his new barn just last week, complete with all the latest milking technology. Unfortunately, due to engineering problems, all the stalls in the new barn are different. For the first week, Farmer John randomly assigned cows to stalls, but it quickly became clear that any given cow was only willing to produce milk in certain stalls. For the last week, Farmer John has been collecting data on which cows are willing to produce milk in which stalls. A stall may be only assigned to one cow, and, of course, a cow may be only assigned to one stall. 
Given the preferences of the cows, compute the maximum number of milk-producing assignments of cows to stalls that is possible. 

Input

The input includes several cases. For each case, the first line contains two integers, N (0 <= N <= 200) and M (0 <= M <= 200). N is the number of cows that Farmer John has and M is the number of stalls in the new barn. Each of the following N lines corresponds to a single cow. The first integer (Si) on the line is the number of stalls that the cow is willing to produce milk in (0 <= Si <= M). The subsequent Si integers on that line are the stalls in which that cow is willing to produce milk. The stall numbers will be integers in the range (1..M), and no stall will be listed twice for a given cow.

Output

For each case, output a single line with a single integer, the maximum number of milk-producing stall assignments that can be made.

Sample Input

5 5
2 2 5
3 2 3 4
2 1 5
3 1 2 5
1 2

Sample Output

4

Source


裸hungary
算法思想就是不停假设一个点是未盖点然后找增广路
贴一些知识
http://www.renfei.org/blog/bipartite-matching.html
 
匹配:在图论中,一个「匹配」(matching)是一个边的集合,其中任意两条边都没有公共顶点。

最大匹配:一个图所有匹配中,所含匹配边数最多的匹配,称为这个图的最大匹配。

完美匹配:如果一个图的某个匹配中,所有的顶点都是匹配点,那么它就是一个完美匹配。显然,完美匹配一定是最大匹配(完美匹配的任何一个点都已经匹配,添加一条新的匹配边一定会与已有的匹配边冲突)。但并非每个图都存在完美匹配。

交替路:从一个未匹配点出发,依次经过非匹配边、匹配边、非匹配边...形成的路径叫交替路。

增广路:从一个未匹配点出发,走交替路,如果途径另一个未匹配点(出发的点不算),则这条交替路称为增广路(agumenting path)。

最大匹配数:最大匹配的匹配边的数目
最小点覆盖数:选取最少的点,使任意一条边至少有一个端点被选择
最大独立数:选取最多的点,使任意所选两点均不相连
最小路径覆盖数:对于一个 DAG(有向无环图),选取最少条路径,使得每个顶点属于且仅属于一条路径。路径长可以为 0(即单个点)。

定理1:最大匹配数 = 最小点覆盖数(这是 Konig 定理)
定理2:最大匹配数 = 最大独立数
定理3:最小路径覆盖数 = 顶点数 - 最大匹配数

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int N=;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,m,s,u,v;
struct edge{
int v,ne;
}e[N*N<<];
int h[N],cnt=;
inline void ins(int u,int v){
cnt++;
e[cnt].v=v;e[cnt].ne=h[u];h[u]=cnt;
}
int vis[N],le[N];
bool find(int u){
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v;
if(!vis[v]){
vis[v]=;
if(!le[v]||find(le[v])){
le[v]=u;
return true;
}
}
}
return false;
}
int ans=;
void hungary(){
memset(le,,sizeof(le));
for(int i=;i<=n;i++){
memset(vis,,sizeof(vis));
if(find(i)) ans++;
}
}
int main(){
while(scanf("%d%d",&n,&m)!=EOF){
cnt=;
memset(h,,sizeof(h));
for(int i=;i<=n;i++){
s=read();
while(s--){v=read();ins(i,v);}
}
ans=;
hungary();
printf("%d\n",ans);
}
}
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int N=;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,m,s,u,v,g[N][N];
int vis[N],le[N];
bool find(int u){
for(int i=;i<=m;i++) if(g[u][i]&&!vis[i]){
vis[i]=;
if(!le[i]||find(le[i])){
le[i]=u;
return true;
}
}
return false;
}
int ans=;
void hungary(){
memset(le,,sizeof(le));
for(int i=;i<=n;i++){
memset(vis,,sizeof(vis));
if(find(i)) ans++;
}
}
int main(){
while(scanf("%d%d",&n,&m)!=EOF){
memset(g,,sizeof(g));
for(int i=;i<=n;i++){
s=read();
while(s--){v=read();g[i][v]=;}
}
ans=;
hungary();
printf("%d\n",ans);
}
}
 
 
 
 
 
 
 
 
 
 

POJ1274 The Perfect Stall[二分图最大匹配 Hungary]【学习笔记】的更多相关文章

  1. POJ1274 The Perfect Stall[二分图最大匹配]

    The Perfect Stall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 23911   Accepted: 106 ...

  2. [POJ] 1274 The Perfect Stall(二分图最大匹配)

    题目地址:http://poj.org/problem?id=1274 把每个奶牛ci向它喜欢的畜栏vi连边建图.那么求最大安排数就变成求二分图最大匹配数. #include<cstdio> ...

  3. poj1274 The Perfect Stall (二分最大匹配)

    Description Farmer John completed his new barn just last week, complete with all the latest milking ...

  4. POJ1274 The Perfect Stall 二分图,匈牙利算法

    N头牛,M个畜栏,每头牛仅仅喜欢当中的某几个畜栏,可是一个畜栏仅仅能有一仅仅牛拥有,问最多能够有多少仅仅牛拥有畜栏. 典型的指派型问题,用二分图匹配来做,求最大二分图匹配能够用最大流算法,也能够用匈牙 ...

  5. POJ1274 The Perfect Stall【二部图最大匹配】

    主题链接: id=1274">http://poj.org/problem? id=1274 题目大意: 有N头奶牛(编号1~N)和M个牛棚(编号1~M). 每头牛仅仅可产一次奶.每一 ...

  6. POJ1274 The Perfect Stall

    The Perfect Stall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 25739   Accepted: 114 ...

  7. POJ1274_The Perfect Stall(二部图最大匹配)

    解决报告 http://blog.csdn.net/juncoder/article/details/38136193 id=1274">题目传送门 题意: n头m个机器,求最大匹配. ...

  8. 洛谷P1894 [USACO4.2]完美的牛栏The Perfect Stall(二分图)

    P1894 [USACO4.2]完美的牛栏The Perfect Stall 题目描述 农夫约翰上个星期刚刚建好了他的新牛棚,他使用了最新的挤奶技术.不幸的是,由于工程问题,每个牛栏都不一样.第一个星 ...

  9. poj--1274--The Perfect Stall(最大匹配)

    The Perfect Stall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 21665   Accepted: 973 ...

随机推荐

  1. 自己写的一个Vue

    下面这里是我自己写的一个小型的vue,原理就是proxy: //Proxy天生没有prototype,因此要加上,不然extends会报错 Proxy.prototype = Proxy.protot ...

  2. python---基础知识回顾(一)(引用计数,深浅拷贝,列表推导式,lambda表达式,命名空间,函数参数逆收集,内置函数,hasattr...)

    一:列表和元组(引用计数了解,深浅拷贝了解) 序列:序列是一种数据结构,对其中的元素按顺序进行了编号(从0开始).典型的序列包括了列表,字符串,和元组 列表是可变的(可以进行修改),而元组和字符串是不 ...

  3. html5 canvas loading(这可怕的编辑器,自动把我的canvas转义了)---以前收藏的整理了一下

    /* super inefficient right now, could be improved */ var c = document.getElementById('canvasload'), ...

  4. javascript公有静态成员

    公共静态成员在javascript中并没有特殊语法来表示静态成员.但是可以通过使用构造函数向其添加属性这种方式. //构造函数 var Gadget = function(){}; //静态方法 Ga ...

  5. spring Mvc + Maven + 拷贝插件 (十一)

    maven-antrun-plugin:可用于在项目编译打包时,把文件指定的文件拷贝到指定的位置,我们打包一般都是打包到 项目 的target 文件下; <groupId>org.apac ...

  6. HDU 2054 又见GCD

    又见GCD Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Subm ...

  7. 【干货】linux系统信息收集 ----检测是否被恶意程序执行了危险性命令

    这些实战完全可以练习以下命令,已经找到需要观察的交互点,真实工作的时候,把数据都导入到自己U盘或者工作站内. 在kali 或者centos下训练都一样,关于kali教学,这里推荐掌控安全团队的课程:掌 ...

  8. DVWA的Xss跨站总结

    Xss跨站总结 初级防护的代码 Poc:<script>alert(1)</script> 上图防护的代码 为输入的结果就为输出的结果 中级防护的代码 Poc:<scri ...

  9. Nagios介绍

    Nagios介绍 Nagios是一款功能强大.优秀的开源监控系统,它能够让你发现和解决IT架构中存在的问题,避免这些问题影响到关键业务流程. Nagios最早于1999年发布,它在开源社区的影响力是相 ...

  10. php ++测试

    2014年4月27日 12:17:47 结论暂时没有组织语言去表述,但是看看测试结果大家都会明白的 $x = 1; $y = empty($x) ? 3 : $x++; var_dump($x,$y) ...