The Perfect Stall
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 23911   Accepted: 10640

Description

Farmer John completed his new barn just last week, complete with all the latest milking technology. Unfortunately, due to engineering problems, all the stalls in the new barn are different. For the first week, Farmer John randomly assigned cows to stalls, but it quickly became clear that any given cow was only willing to produce milk in certain stalls. For the last week, Farmer John has been collecting data on which cows are willing to produce milk in which stalls. A stall may be only assigned to one cow, and, of course, a cow may be only assigned to one stall. 
Given the preferences of the cows, compute the maximum number of milk-producing assignments of cows to stalls that is possible. 

Input

The input includes several cases. For each case, the first line contains two integers, N (0 <= N <= 200) and M (0 <= M <= 200). N is the number of cows that Farmer John has and M is the number of stalls in the new barn. Each of the following N lines corresponds to a single cow. The first integer (Si) on the line is the number of stalls that the cow is willing to produce milk in (0 <= Si <= M). The subsequent Si integers on that line are the stalls in which that cow is willing to produce milk. The stall numbers will be integers in the range (1..M), and no stall will be listed twice for a given cow.

Output

For each case, output a single line with a single integer, the maximum number of milk-producing stall assignments that can be made.

Sample Input

5 5
2 2 5
3 2 3 4
2 1 5
3 1 2 5
1 2

Sample Output

4

Source


裸hungary
算法思想就是不停假设一个点是未盖点然后找增广路
贴一些知识
http://www.renfei.org/blog/bipartite-matching.html
 
匹配:在图论中,一个「匹配」(matching)是一个边的集合,其中任意两条边都没有公共顶点。

最大匹配:一个图所有匹配中,所含匹配边数最多的匹配,称为这个图的最大匹配。

完美匹配:如果一个图的某个匹配中,所有的顶点都是匹配点,那么它就是一个完美匹配。显然,完美匹配一定是最大匹配(完美匹配的任何一个点都已经匹配,添加一条新的匹配边一定会与已有的匹配边冲突)。但并非每个图都存在完美匹配。

交替路:从一个未匹配点出发,依次经过非匹配边、匹配边、非匹配边...形成的路径叫交替路。

增广路:从一个未匹配点出发,走交替路,如果途径另一个未匹配点(出发的点不算),则这条交替路称为增广路(agumenting path)。

最大匹配数:最大匹配的匹配边的数目
最小点覆盖数:选取最少的点,使任意一条边至少有一个端点被选择
最大独立数:选取最多的点,使任意所选两点均不相连
最小路径覆盖数:对于一个 DAG(有向无环图),选取最少条路径,使得每个顶点属于且仅属于一条路径。路径长可以为 0(即单个点)。

定理1:最大匹配数 = 最小点覆盖数(这是 Konig 定理)
定理2:最大匹配数 = 最大独立数
定理3:最小路径覆盖数 = 顶点数 - 最大匹配数

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int N=;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,m,s,u,v;
struct edge{
int v,ne;
}e[N*N<<];
int h[N],cnt=;
inline void ins(int u,int v){
cnt++;
e[cnt].v=v;e[cnt].ne=h[u];h[u]=cnt;
}
int vis[N],le[N];
bool find(int u){
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v;
if(!vis[v]){
vis[v]=;
if(!le[v]||find(le[v])){
le[v]=u;
return true;
}
}
}
return false;
}
int ans=;
void hungary(){
memset(le,,sizeof(le));
for(int i=;i<=n;i++){
memset(vis,,sizeof(vis));
if(find(i)) ans++;
}
}
int main(){
while(scanf("%d%d",&n,&m)!=EOF){
cnt=;
memset(h,,sizeof(h));
for(int i=;i<=n;i++){
s=read();
while(s--){v=read();ins(i,v);}
}
ans=;
hungary();
printf("%d\n",ans);
}
}
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int N=;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,m,s,u,v,g[N][N];
int vis[N],le[N];
bool find(int u){
for(int i=;i<=m;i++) if(g[u][i]&&!vis[i]){
vis[i]=;
if(!le[i]||find(le[i])){
le[i]=u;
return true;
}
}
return false;
}
int ans=;
void hungary(){
memset(le,,sizeof(le));
for(int i=;i<=n;i++){
memset(vis,,sizeof(vis));
if(find(i)) ans++;
}
}
int main(){
while(scanf("%d%d",&n,&m)!=EOF){
memset(g,,sizeof(g));
for(int i=;i<=n;i++){
s=read();
while(s--){v=read();g[i][v]=;}
}
ans=;
hungary();
printf("%d\n",ans);
}
}
 
 
 
 
 
 
 
 
 
 

POJ1274 The Perfect Stall[二分图最大匹配 Hungary]【学习笔记】的更多相关文章

  1. POJ1274 The Perfect Stall[二分图最大匹配]

    The Perfect Stall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 23911   Accepted: 106 ...

  2. [POJ] 1274 The Perfect Stall(二分图最大匹配)

    题目地址:http://poj.org/problem?id=1274 把每个奶牛ci向它喜欢的畜栏vi连边建图.那么求最大安排数就变成求二分图最大匹配数. #include<cstdio> ...

  3. poj1274 The Perfect Stall (二分最大匹配)

    Description Farmer John completed his new barn just last week, complete with all the latest milking ...

  4. POJ1274 The Perfect Stall 二分图,匈牙利算法

    N头牛,M个畜栏,每头牛仅仅喜欢当中的某几个畜栏,可是一个畜栏仅仅能有一仅仅牛拥有,问最多能够有多少仅仅牛拥有畜栏. 典型的指派型问题,用二分图匹配来做,求最大二分图匹配能够用最大流算法,也能够用匈牙 ...

  5. POJ1274 The Perfect Stall【二部图最大匹配】

    主题链接: id=1274">http://poj.org/problem? id=1274 题目大意: 有N头奶牛(编号1~N)和M个牛棚(编号1~M). 每头牛仅仅可产一次奶.每一 ...

  6. POJ1274 The Perfect Stall

    The Perfect Stall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 25739   Accepted: 114 ...

  7. POJ1274_The Perfect Stall(二部图最大匹配)

    解决报告 http://blog.csdn.net/juncoder/article/details/38136193 id=1274">题目传送门 题意: n头m个机器,求最大匹配. ...

  8. 洛谷P1894 [USACO4.2]完美的牛栏The Perfect Stall(二分图)

    P1894 [USACO4.2]完美的牛栏The Perfect Stall 题目描述 农夫约翰上个星期刚刚建好了他的新牛棚,他使用了最新的挤奶技术.不幸的是,由于工程问题,每个牛栏都不一样.第一个星 ...

  9. poj--1274--The Perfect Stall(最大匹配)

    The Perfect Stall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 21665   Accepted: 973 ...

随机推荐

  1. Scala进阶之路-Scala的基本语法

    Scala进阶之路-Scala的基本语法 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.函数式编程初体验Spark-Shell之WordCount var arr=Array( ...

  2. Linux shell 日期,时间相关的命令

    在shell脚本中,经常要用到跟获取日期相关的东西,这里记录一下Linux shell 获取日期的方法 获取当前日期:today=`date +"%Y-%m-%d"` 获取昨天的日 ...

  3. bzoj千题计划258:bzoj3123: [Sdoi2013]森林

    http://www.lydsy.com/JudgeOnline/problem.php?id=3123 启发式合并主席树 #include<cmath> #include<cstd ...

  4. jQuery下ajax事件的简单分析

    昨天写了一篇关于监视页面动态生成元素问题的文章,引起了一些小小的争议,不过我从中学到了很多.文章在这,<jQuery下实现等待指定元素加载完毕>当然 动态生成的节点元素 分很多种情况,这里 ...

  5. python中的 __repr__和__str__

    __repr__,被内置函数repr用于把一个对象用"官方"的字符串形式表示出来(终端友好)    1.值传给eval()来返回一个对象的字符串表示形式    2.否则返回一个尖括 ...

  6. 洛谷4951 地震 bzoj1816扑克牌 洛谷3199最小圈 / 01分数规划

    洛谷4951 地震 #include<iostream> #include<cstdio> #include<algorithm> #define go(i,a,b ...

  7. 对git简单的认识

    了解git工作区.暂存区.版本库: 其中,使用 git add .就是将文件添加到了暂存区:而git commit -m ‘desc’:将暂存区的文件添加到版本库: 每次更新项目的步骤: 1)每次更新 ...

  8. Jmeter如何保持cookie,让所有请求都能用同一个cookie,免去提取JSESSIONID

    近期有柠檬班的学生找到华华,问了一个问题,就是利用Jmeter做接口测试的时候,如何提取头部的JSESSIONID然后传递到下一个请求,继续完成当前用户的请求. 其实,关于这个问题有三种种解决方法: ...

  9. vs-code 配置

    vs-code 快键键 命令面板 ctrl+shift+p vs-code 相关插件 AutoFileName Chinese (Simplified) Language Pack for Visua ...

  10. echo变量失败,提示:ECHO 处于关闭状态

    检查变量值,变量值为空就会提示关闭