Description

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate).

Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated.

Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

Input

Line 1: Three space-separated integers: N, ML, and MD.

Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.

Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

Output

Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

Sample Input

4 2 1
1 3 10
2 4 20
2 3 3

Sample Output

27

Hint

Explanation of the sample:

There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart.

The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

 
---------
 
对于差分系统的讲解在这个讲的比较清楚
https://blog.csdn.net/mengxiang000000/article/details/52613328
 
如果仅仅用Bellman-Ford会TLE
所以需要优化,使用SPFA
http://www.cnblogs.com/shadowland/p/5870640.html
这个对spfa讲解的比较清楚
 
 
AC代码:
#include<iostream>
#include<algorithm>
#include<queue>
#include<vector>
using namespace std; struct edge{
int from,to,cost;
};
int visit[];
int cnt[];
int d[];
queue<int> que;
int n,size,sum;
vector<edge> es; int main(){
int ml,md;
cin>>n>>ml>>md;
sum=ml+md;
es.resize(sum);
for(int i=;i<ml;i++){
int a,b,c;
cin>>a>>b>>c;
edge e={a,b,c};
es[i]=e;
}
for(int i=ml;i<ml+md;i++){
int a,b,c;
cin>>a>>b>>c;
edge e={b,a,-c};
es[i]=e;
}
for(int i=;i<n;i++){
edge e={i+,i,};
es.push_back(e);
}
size=es.size(); for(int i=;i<=n;i++)
d[i]=INT_MAX;
d[]=;
que.push();
visit[]=;
cnt[]++;
while(!que.empty()){
int p=que.front();
que.pop();
visit[p]=;
for(int i=;i<size;i++){
edge e=es[i];
if(e.from==p&&d[e.from]+e.cost<d[e.to]){
d[e.to]=d[e.from]+e.cost;
if(visit[e.to]==){
cnt[e.to]++;
if(cnt[e.to]>=n){
cout<<-;
return ;
}
que.push(e.to);
visit[e.to]=;
}
}
}
}
if(d[n]==INT_MAX)
cout<<-;
else
cout<<d[n];
return ;
}

POJ3169--Layout(SPFA+差分系统)的更多相关文章

  1. POJ3169:Layout(差分约束)

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 15705   Accepted: 7551 题目链接:http ...

  2. POJ 3169 Layout (spfa+差分约束)

    题目链接:http://poj.org/problem?id=3169 差分约束的解释:http://www.cnblogs.com/void/archive/2011/08/26/2153928.h ...

  3. [USACO2005][POJ3169]Layout(差分约束)

    题目:http://poj.org/problem?id=3169 题意:给你一组不等式了,求满足的最小解 分析: 裸裸的差分约束. 总结一下差分约束: 1.“求最大值”:写成"<=& ...

  4. POJ-3169 Layout (差分约束+SPFA)

    POJ-3169 Layout:http://poj.org/problem?id=3169 参考:https://blog.csdn.net/islittlehappy/article/detail ...

  5. POJ3169 Layout(差分约束系统)

    POJ3169 Layout 题意: n头牛编号为1到n,按照编号的顺序排成一列,每两头牛的之间的距离 >= 0.这些牛的距离存在着一些约束关系:1.有ml组(u, v, w)的约束关系,表示牛 ...

  6. O - Layout(差分约束 + spfa)

    O - Layout(差分约束 + spfa) Like everyone else, cows like to stand close to their friends when queuing f ...

  7. Did Pong Lie? (差分系统 判负环)

    Did Pong Lie? 时间限制: 5 Sec  内存限制: 128 MB提交: 68  解决: 15[提交][状态][讨论版] 题目描述 Doctor Pong has two arrays o ...

  8. (简单) POJ 3169 Layout,差分约束+SPFA。

    Description Like everyone else, cows like to stand close to their friends when queuing for feed. FJ ...

  9. POJ 3169 Layout 【差分约束】+【spfa】

    <题目链接> 题目大意: 一些母牛按序号排成一条直线.有两种要求,A和B距离不得超过X,还有一种是C和D距离不得少于Y,问可能的最大距离.如果没有最大距离输出-1,如果1.n之间距离任意就 ...

随机推荐

  1. jQuery 实例

    选择器 $(this).hide() 隐藏当前的 HTML 元素. $("p").hide() 隐藏所有 <p> 元素. $(".test").hi ...

  2. Java并发-ConcurrentModificationException原因源码分析与解决办法

    一.异常原因与异常源码分析 对集合(List.Set.Map)迭代时对其进行修改就会出现java.util.ConcurrentModificationException异常.这里以ArrayList ...

  3. PAT 1008 数组元素循环右移问题 (20)(代码)

    1008 数组元素循环右移问题 (20)(20 分) 一个数组A中存有N(N&gt0)个整数,在不允许使用另外数组的前提下,将每个整数循环向右移M(M>=0)个位置,即将A中的数据由(A ...

  4. String 练习

    package com.hanqi; import java.util.Random; public class Text { public static void main(String[] arg ...

  5. WebDriverException:Message:'geckodriver'executable needs to be in Path

    geckodriver是一原生态的第三方浏览器,对于selenium3.x版本都会使用geckodriver来驱动firefox,所以需要下载geckodriver.exe,下载地址:https:// ...

  6. Java 中转换为String类型的四种方法

    1. 使用 String 的构造方法,用于 byte[], char[], StringBuffer, StringBuilder 类型 2. 使用 String 的静态方法 valueOf() 推荐 ...

  7. flask部署

    https://blog.csdn.net/zhuod/article/details/77850783

  8. Linq去重 不用实现IEqualityComparer接口的方法超级简单

    RskFactorRelation.Instance.GetCache<RskFactorRelation>(true).Where(x => !string.IsNullOrEmp ...

  9. HttpURLConnection 返回汉字乱码(全是问号)

    public static String doPost(String urlStr, Map<String, Object> paramMap) throws Exception { UR ...

  10. 【UI测试】--合理性