51nod 1258 序列求和 V4
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1258
第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 500)
第2 - T + 1行:每行2个数,N, K中间用空格分割。(1 <= N <= 10^18, 1 <= K <= 50000)
共T行,对应S(n) Mod 1000000007的结果。
3
5 3
4 2
4 1
225
30
10
拉格朗日插值法
注意观察 插值表达式分子分母的性质,递推得每一项的值
#include<cstdio>
#include<iostream> using namespace std; const int mod=1e9+; typedef long long LL; int sum[];
int jc[],inv[];
int l[],r[]; template<typename T>
void read(T &x)
{
x=; char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
} int Pow(int a,int b)
{
int res=;
for(;b;a=1LL*a*a%mod,b>>=)
if(b&) res=1LL*res*a%mod;
return res;
} int solve(LL n,int k)
{
if(n<=k+) return sum[n];
n%=mod;
int w=Pow(jc[k+],mod-);
l[]=;
for(int i=;i<=k+;++i) l[i]=1LL*l[i-]*(n-i)%mod;
r[k+]=;
for(int i=k+;i;--i) r[i]=1LL*r[i+]*(n-i)%mod;
int ans=;
for(int i=;i<=k+;++i)
{
ans=(ans+1LL*sum[i]*w%mod*l[i-]%mod*r[i+]%mod)%mod;
w=1LL*w*(i-k-)%mod*inv[i]%mod;
}
if(ans<) ans+=mod;
return ans;
} int main()
{
int T;
read(T);
LL n; int k;
inv[]=;
for(int i=;i<=;++i) inv[i]=1LL*(mod-mod/i)*inv[mod%i]%mod;
jc[]=;
for(int i=;i<=;++i) jc[i]=1LL*jc[i-]*(-i)%mod;
while(T--)
{
read(n); read(k);
for(int i=;i<=k+;++i) sum[i]=(sum[i-]+Pow(i,k))%mod;
printf("%d\n",solve(n,k));
}
return ;
}
51nod 1258 序列求和 V4的更多相关文章
- 51NOD 1258 序列求和 V4 [任意模数fft 多项式求逆元 伯努利数]
1258 序列求和 V4 题意:求\(S_m(n) = \sum_{i=1}^n i^m \mod 10^9+7\),多组数据,\(T \le 500, n \le 10^{18}, k \le 50 ...
- 【51Nod1258】序列求和V4(FFT)
[51Nod1258]序列求和V4(FFT) 题面 51Nod 多组数据,求: \[Ans=\sum_{i=1}^ni^k,n\le 10^{18},k\le50000\] 题解 预处理伯努利数,时间 ...
- 51nod 1228 序列求和(伯努利数)
1228 序列求和 题目来源: HackerRank 基准时间限制:3 秒 空间限制:131072 KB 分值: 160 难度:6级算法题 收藏 关注 T(n) = n^k,S(n) = T(1 ...
- 51nod 1228、1258 序列求和
这里一次讲两题...貌似都是板子? 所以两题其实可以一起做 [雾 noteskey 总之就是伯努利数的两道入门题啦,就是第二道有点鬼畜了,居然要任意模数的!(好吧是 1e9+7 但也没什么区别了) 伯 ...
- [51nod 1822]序列求和
\(k\leq 200000\) 考虑转化成枚举 \(k\) 的形式 我们错位相减! \[A_k=\sum_{i=1}^N i^K\times R^i \\ RA_k=\sum_{i=2}^{N+1} ...
- 51nod 1228 序列求和 ( 1^k+2^k+3^k+...+n^k )
C为组合数,B为伯努利数 具体推到过程略 参考博客:http://blog.csdn.net/acdreamers/article/details/38929067# (我的式子和博客中的不一样,不过 ...
- 51nod1258 序列求和V4
T(n) = n^k,S(n) = T(1) + T(2) + ...... T(n).给出n和k,求S(n). 例如k = 2,n = 5,S(n) = 1^2 + 2^2 + 3^2 + 4^ ...
- 51Nod - 1228 序列求和 (自然数幂和+伯努利数)
https://vjudge.net/problem/51Nod-1228 Description T(n) = n^k,S(n) = T(1) + T(2) + ...... T(n).给出n和k, ...
- 51Nod 1228 序列求和
T(n) = n^k,S(n) = T(1) + T(2) + ...... T(n).给出n和k,求S(n). 例如k = 2,n = 5,S(n) = 1^2 + 2^2 + 3^2 + 4^ ...
随机推荐
- java实现基于关键字的文件夹(文件)的搜索、文件夹(文件)的复制、删除
最近在做一个项目,需要实现这几项功能,上网查了很多资料,自己研究了好几天终于实现了,现在与大家分享一下. 一.JAVA实现文件夹的搜索 在百度搜索N个技术文章,从哪些大牛们共享的资料中终于写出了我 ...
- JNI探秘-----FileInputStream的read方法详解
作者:zuoxiaolong8810(左潇龙),转载请注明出处,特别说明:本博文来自博主原博客,为保证新博客中博文的完整性,特复制到此留存,如需转载请注明新博客地址即可. 上一章我们已经分析过File ...
- 关于hive的优化
首先hive本质就是mapreduce,那么优化就从mapreduce开始入手. 然而mapreduce的执行快慢又和map和reduce的个数有关,所以我们先从这里下手,调整并发度. 关于map的优 ...
- Qt QpushButton 实现长按下功能
做项目需要一个按钮具备长时间按下的功能,才发现Qt原始的按钮是没有这个功能,不过Qt的原生按钮是存在按下和释放信号的,有了这两个信号,再来实现按钮长时间被按下,这就简单了,看下动画演示. 录成GIF效 ...
- 小白之selenium+python关于cookies绕开登录1
cookie是存储在本地浏览器目录的一些信息,详细一点的话可以查看度娘,按照我的理解就是将信息存储在本地,访问网站的时候,网站的服务器会优先读取本地目录位置的信息,然后做出相对的反应.这就是为什么有的 ...
- OpenCV操作像素
在了解了图像的基础知识和OpenCV的基础知识和操作以后,接下来我们要做的就对像素进行操作,我们知道了图像的本质就是一个矩阵,那么一个矩阵中存储了那么多的像素,我们如何来操作呢?下面通过几个例子来看看 ...
- net面试宝典
ASP.NET常见面试题及答案 1. 简述 private. protected. public. internal 修饰符的访问权限. 答 . private : 私有成员, 在类的内部才可以访问. ...
- 分分钟让你理解HTTPS
一.HTTP存在的问题 1.1 可能被窃听 HTTP 本身不具备加密的功能,HTTP 报文使用明文方式发送 由于互联网是由联通世界各个地方的网络设施组成,所有发送和接收经过某些设备的数据都可能被截获或 ...
- CSAPP lab2 二进制拆弹 binary bombs phase_5
给出对应于7个阶段的7篇博客 phase_1 https://www.cnblogs.com/wkfvawl/p/10632044.htmlphase_2 https://www.cnblogs. ...
- BugPhobia开发篇章:Beta阶段第III次Scrum Meeting
0x01 :Scrum Meeting基本摘要 Beta阶段第三次Scrum Meeting 敏捷开发起始时间 2015/12/15 00:00 A.M. 敏捷开发终止时间 2015/12/15 23 ...