http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1258

基准时间限制:8 秒 空间限制:131072 KB 分值: 1280 难度:9级算法题
 收藏
 关注
T(n) = n^k,S(n) = T(1) + T(2) + ...... T(n)。给出n和k,求S(n)。

 
例如k = 2,n = 5,S(n) = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55。
由于结果很大,输出S(n) Mod 1000000007的结果即可。
Input
第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 500)
第2 - T + 1行:每行2个数,N, K中间用空格分割。(1 <= N <= 10^18, 1 <= K <= 50000)
Output
共T行,对应S(n) Mod 1000000007的结果。
Input示例
3
5 3
4 2
4 1
Output示例
225
30
10

拉格朗日插值法

注意观察 插值表达式分子分母的性质,递推得每一项的值

#include<cstdio>
#include<iostream> using namespace std; const int mod=1e9+; typedef long long LL; int sum[];
int jc[],inv[];
int l[],r[]; template<typename T>
void read(T &x)
{
x=; char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
} int Pow(int a,int b)
{
int res=;
for(;b;a=1LL*a*a%mod,b>>=)
if(b&) res=1LL*res*a%mod;
return res;
} int solve(LL n,int k)
{
if(n<=k+) return sum[n];
n%=mod;
int w=Pow(jc[k+],mod-);
l[]=;
for(int i=;i<=k+;++i) l[i]=1LL*l[i-]*(n-i)%mod;
r[k+]=;
for(int i=k+;i;--i) r[i]=1LL*r[i+]*(n-i)%mod;
int ans=;
for(int i=;i<=k+;++i)
{
ans=(ans+1LL*sum[i]*w%mod*l[i-]%mod*r[i+]%mod)%mod;
w=1LL*w*(i-k-)%mod*inv[i]%mod;
}
if(ans<) ans+=mod;
return ans;
} int main()
{
int T;
read(T);
LL n; int k;
inv[]=;
for(int i=;i<=;++i) inv[i]=1LL*(mod-mod/i)*inv[mod%i]%mod;
jc[]=;
for(int i=;i<=;++i) jc[i]=1LL*jc[i-]*(-i)%mod;
while(T--)
{
read(n); read(k);
for(int i=;i<=k+;++i) sum[i]=(sum[i-]+Pow(i,k))%mod;
printf("%d\n",solve(n,k));
}
return ;
}

51nod 1258 序列求和 V4的更多相关文章

  1. 51NOD 1258 序列求和 V4 [任意模数fft 多项式求逆元 伯努利数]

    1258 序列求和 V4 题意:求\(S_m(n) = \sum_{i=1}^n i^m \mod 10^9+7\),多组数据,\(T \le 500, n \le 10^{18}, k \le 50 ...

  2. 【51Nod1258】序列求和V4(FFT)

    [51Nod1258]序列求和V4(FFT) 题面 51Nod 多组数据,求: \[Ans=\sum_{i=1}^ni^k,n\le 10^{18},k\le50000\] 题解 预处理伯努利数,时间 ...

  3. 51nod 1228 序列求和(伯努利数)

    1228 序列求和  题目来源: HackerRank 基准时间限制:3 秒 空间限制:131072 KB 分值: 160 难度:6级算法题  收藏  关注 T(n) = n^k,S(n) = T(1 ...

  4. 51nod 1228、1258 序列求和

    这里一次讲两题...貌似都是板子? 所以两题其实可以一起做 [雾 noteskey 总之就是伯努利数的两道入门题啦,就是第二道有点鬼畜了,居然要任意模数的!(好吧是 1e9+7 但也没什么区别了) 伯 ...

  5. [51nod 1822]序列求和

    \(k\leq 200000\) 考虑转化成枚举 \(k\) 的形式 我们错位相减! \[A_k=\sum_{i=1}^N i^K\times R^i \\ RA_k=\sum_{i=2}^{N+1} ...

  6. 51nod 1228 序列求和 ( 1^k+2^k+3^k+...+n^k )

    C为组合数,B为伯努利数 具体推到过程略 参考博客:http://blog.csdn.net/acdreamers/article/details/38929067# (我的式子和博客中的不一样,不过 ...

  7. 51nod1258 序列求和V4

    T(n) = n^k,S(n) = T(1) + T(2) + ...... T(n).给出n和k,求S(n).   例如k = 2,n = 5,S(n) = 1^2 + 2^2 + 3^2 + 4^ ...

  8. 51Nod - 1228 序列求和 (自然数幂和+伯努利数)

    https://vjudge.net/problem/51Nod-1228 Description T(n) = n^k,S(n) = T(1) + T(2) + ...... T(n).给出n和k, ...

  9. 51Nod 1228 序列求和

    T(n) = n^k,S(n) = T(1) + T(2) + ...... T(n).给出n和k,求S(n).   例如k = 2,n = 5,S(n) = 1^2 + 2^2 + 3^2 + 4^ ...

随机推荐

  1. nginx location 正则匹配

    nginx 统计语句1.根据访问IP统计UV awk '{print $1}' access.log|sort | uniq -c |wc -l2.统计访问URL统计PV awk '{print $7 ...

  2. Android 测试之Monkey

    一.什么是Monkey Monkey是Android中的一个命令行工具,可以运行在模拟器里或实际设备中.它向系统发送伪随机的用户事件流(如按键输入.触摸屏输入.手势输入等),实现对正在开发的应用程序进 ...

  3. web安全入门课程笔记——网站基础与信息搜集

    2-1 网站的基本概念 URL统一资源定位符 这是一个动态页面 ?ID 查询条件 后台数据库最有可能:ACCESS Web容器(web容器是一种服务程序,在服务器一个端口就有一个提供相应服务的程序,而 ...

  4. 微软职位内部推荐-Sr. SW Engineer for Privacy Id

    微软近期Open的职位: Job posting title: Senior Software Engineer for Privacy Identification Profession: Engi ...

  5. win2003无线网卡驱动无法安装解决方法

    Windows 2003 Server对无线网卡的pci资源分配出了问题,而笔记本bios中屏蔽了pci配置项,无法修改. 打开资源管理器菜单,工具-文件夹选项-显示,去掉“隐藏受保护的操作系统文件” ...

  6. 带状态论文粗读(三)[引用openstate的相关论文阅读]

    一 文章名称:FLOWGUARD: Building Robust Firewalls for Software-Defined Networks 发表时间:2014 期刊来源:--- 解决问题: 一 ...

  7. Leetcode——37.解数独 [##]

    @author: ZZQ @software: PyCharm @file: leetcode37_solveSudoku.py @time: 2018/11/20 16:41 思路:递归回溯 首先, ...

  8. 四则运算level2

    package j; import java.util.Scanner; public class Main { public static void main(String[] args) { Sc ...

  9. Sprint最后一天

    界面流程:  数据库里的信息: 还存在的问题: 1:选择包车城市时:下面的界面没对应到包车城市类型 2:看不到个人订票信息

  10. FPGA---Basys3(实验内容汇总贴)

    前言 本博文为FPGA---Basys3入门板的实验汇总帖子. 实验指导书 实验源码github地址 实验目录 组合逻辑电路设计 编码器 比较器 全加器 时序逻辑电路设计 D 触发器的实现 同步复位的 ...