Python 堆与堆排序
堆排序与快速排序,归并排序一样都是时间复杂度为O(N*logN)的几种常见排序方法。学习堆排序前,先讲解下什么是数据结构中的二叉堆。
二叉堆的定义
二叉堆是完全二叉树或者是近似完全二叉树。
二叉堆满足二个特性:
1.父结点的键值总是大于或等于(小于或等于)任何一个子节点的键值。
2.每个结点的左子树和右子树都是一个二叉堆(都是最大堆或最小堆)。
当父结点的键值总是大于或等于任何一个子节点的键值时为最大堆。当父结点的键值总是小于或等于任何一个子节点的键值时为最小堆。下图展示一个最小堆:

由于其它几种堆(二项式堆,斐波纳契堆等)用的较少,一般将二叉堆就简称为堆。
堆的存储
一般都用数组来表示堆,i结点的父结点下标就为(i – 1) / 2。它的左右子结点下标分别为2 * i + 1和2 * i + 2。如第0个结点左右子结点下标分别为1和2。

堆的操作——插入删除
下面先给出《数据结构C++语言描述》中最小堆的建立插入删除的图解,再给出本人的实现代码,最好是先看明白图后再去看代码。

堆的插入
每次插入都是将新数据放在数组最后。可以发现从这个新数据的父结点到根结点必然为一个有序的数列,现在的任务是将这个新数据插入到这个有序数据中——这就类似于直接插入排序中将一个数据并入到有序区间中,对照《白话经典算法系列之二 直接插入排序的三种实现》不难写出插入一个新数据时堆的调整代码:
更简短的表达为:
void MinHeapFixup(int a[], int i)
{
for (int j = (i - ) / ; (j >= && i != )&& a[i] > a[j]; i = j, j = (i - ) / )
Swap(a[i], a[j]);
}
插入时:
//在最小堆中加入新的数据nNum
void MinHeapAddNumber(int a[], int n, int nNum)
{
a[n] = nNum;
MinHeapFixup(a, n);
}
堆的删除
按定义,堆中每次都只能删除第0个数据。为了便于重建堆,实际的操作是将最后一个数据的值赋给根结点,然后再从根结点开始进行一次从上向下的调整。调整时先在左右儿子结点中找最小的,如果父结点比这个最小的子结点还小说明不需要调整了,反之将父结点和它交换后再考虑后面的结点。相当于从根结点将一个数据的“下沉”过程。下面给出代码:
堆化数组
有了堆的插入和删除后,再考虑下如何对一个数据进行堆化操作。要一个一个的从数组中取出数据来建立堆吧,不用!先看一个数组,如下图:

很明显,对叶子结点来说,可以认为它已经是一个合法的堆了即20,60, 65, 4, 49都分别是一个合法的堆。只要从A[4]=50开始向下调整就可以了。然后再取A[3]=30,A[2] = 17,A[1] = 12,A[0] = 9分别作一次向下调整操作就可以了。下图展示了这些步骤:

写出堆化数组的代码:
//建立最小堆
void MakeMinHeap(int a[], int n)
{
for (int i = n / - ; i >= ; i--)
MinHeapFixdown(a, i, n);
}
至此,堆的操作就全部完成了(注1),再来看下如何用堆这种数据结构来进行排序。
堆排序
首先可以看到堆建好之后堆中第0个数据是堆中最小的数据。取出这个数据再执行下堆的删除操作。这样堆中第0个数据又是堆中最小的数据,重复上述步骤直至堆中只有一个数据时就直接取出这个数据。
由于堆也是用数组模拟的,故堆化数组后,第一次将A[0]与A[n - 1]交换,再对A[0…n-2]重新恢复堆。第二次将A[0]与A[n – 2]交换,再对A[0…n - 3]重新恢复堆,重复这样的操作直到A[0]与A[1]交换。由于每次都是将最小的数据并入到后面的有序区间,故操作完成后整个数组就有序了。有点类似于直接选择排序。
void MinheapsortTodescendarray(int a[], int n)
{
for (int i = n - ; i >= ; i--)
{
Swap(a[i], a[]);
MinHeapFixdown(a, , i);
}
}
注意使用最小堆排序后是递减数组,要得到递增数组,可以使用最大堆。
由于每次重新恢复堆的时间复杂度为O(logN),共N - 1次重新恢复堆操作,再加上前面建立堆时N / 2次向下调整,每次调整时间复杂度也为O(logN)。二次操作时间相加还是O(N * logN)。故堆排序的时间复杂度为O(N * logN)。STL也实现了堆的相关函数,可以参阅《STL系列之四 heap 堆》。
注1 作为一个数据结构,最好用类将其数据和方法封装起来,这样即便于操作,也便于理解。此外,除了堆排序要使用堆,另外还有很多场合可以使用堆来方便和高效的处理数据,以后会一一介绍。
转载请标明出处,原文地址:http://blog.csdn.net/morewindows/article/details/6709644
Python 堆与堆排序的更多相关文章
- python下实现二叉堆以及堆排序
python下实现二叉堆以及堆排序 堆是一种特殊的树形结构, 堆中的数据存储满足一定的堆序.堆排序是一种选择排序, 其算法复杂度, 时间复杂度相对于其他的排序算法都有很大的优势. 堆分为大头堆和小头堆 ...
- Python -- 堆数据结构 heapq - I love this game! - 博客频道 - CSDN.NET
Python -- 堆数据结构 heapq - I love this game! - 博客频道 - CSDN.NET Python -- 堆数据结构 heapq 分类: Python 2012-09 ...
- Python -堆的实现
最小(大)堆是按完全二叉树的排序顺序的方式排布堆中元素的,并且满足:ai >a(2i+1) and ai>a(2i+2)( ai <a(2i+1) and ai<a(2 ...
- Python 实现转堆排序算法原理及时间复杂度(多图解释)
原创文章出自公众号:「码农富哥」,欢迎转载和关注,如转载请注明出处! 堆基本概念 堆排序是一个很重要的排序算法,它是高效率的排序算法,复杂度是O(nlogn),堆排序不仅是面试进场考的重点,而且在很多 ...
- 利用堆实现堆排序&优先队列
数据结构之(二叉)堆一文在末尾提到"利用堆能够实现:堆排序.优先队列.".本文代码实现之. 1.堆排序 如果要实现非递减排序.则须要用要大顶堆. 此处设计到三个大顶堆的操作:(1) ...
- 堆与堆排序/Heap&Heap sort
最近在自学算法导论,看到堆排序这一章,来做一下笔记.堆排序是一种时间复杂度为O(lgn)的原址排序算法.它使用了一种叫做堆的数据结构.堆排序具有空间原址性,即指任何时候都需要常数个额外的元素空间存储临 ...
- 基本数据结构 —— 堆以及堆排序(C++实现)
目录 什么是堆 堆的存储 堆的操作 结构体定义 判断是否为空 往堆中插入元素 从堆中删除元素 取出堆中最大的元素 堆排序 测试代码 例题 参考资料 什么是堆 堆(英语:heap)是计算机科学中一类特殊 ...
- 堆与堆排序、Top k 问题
堆排序与快速排序,归并排序一样都是时间复杂度为O(N*logN)的几种常见排序方法.学习堆排序前,先讲解下什么是数据结构中的二叉堆. 二叉堆的定义 二叉堆是完全二叉树或者是近似完全二叉树. 二叉堆满 ...
- PHP面试:说下什么是堆和堆排序?
堆是什么? 堆是基于树抽象数据类型的一种特殊的数据结构,用于许多算法和数据结构中.一个常见的例子就是优先队列,还有排序算法之一的堆排序.这篇文章我们将讨论堆的属性.不同类型的堆以及堆的常见操作.另外我 ...
随机推荐
- 【LG3768】简单的数学题
[LG3768]简单的数学题 题面 求 \[ (\sum_{i=1}^n\sum_{j=1}^nij\text{gcd}(i,j))\text{mod}p \] 其中\(n\leq 10^{10},5 ...
- 老项目迁移到springboot之后,上线服务器出现404的解决方法
原因是老项目迁移到springboot之后,已经不再使用web.xml的配置了,但是WEB-INF目录下还有web.xml,所以才导致的404,所以只需要在源码处删除整个WEB-INF重新build即 ...
- mysql安装版多次安装导致安装失败的解决方法(windows)(直接使用免安装方法)
https://www.cnblogs.com/feilongblog/p/mysql_install_init.html 测试成功 要点:mysqld install MySQL --default ...
- 上云利器,K8S应用编排设计器之快到极致
前言在前面的文章中,我们已经提到,华为云有一个上云利器:应用编排设计器.作为华为云应用编排服务与用户沟通的桥梁,设计器坚持用户体验至上的理念,以图形化方式,在鼠标点击之间,助力企业快速上云.优质的交互 ...
- Jenkins邮件通知
Jenkins邮件通知 Jenkins 配备了一个开箱工具,添加一个电子邮件通知的构建项目. 第1步 - 配置SMTP服务器. 转到 Manage Jenkins → Configure System ...
- Kaggle入门(一)——Digit Recognizer
目录 0 前言 1 简介 2 数据准备 2.1 导入数据 2.2 检查空值 2.3 正则化 Normalization 2.4 更改数据维度 Reshape 2.5 标签编码 2.6 分割交叉验证集 ...
- FUNMVP:几张图看懂区块链技术到底是什么?(转载)
几张图看懂区块链技术到底是什么? 本文转载自:http://www.cnblogs.com/behindman/p/8873191.html “区块链”的概念可以说是异常火爆,好像互联网金融峰会上没人 ...
- 实战重现隐藏在A标签_blank下的危险漏洞,简略说明noopener的作用
前几日,在看阮一峰老师的博客文章中,发现了这么一篇 .标题为 <target = "_blank" 的危险性(英文)>.这篇文章同事看过之后因为不理解其中的危险之处,念 ...
- hive insert 动态分区异常(Error encountered near token)与解决
当insert数据到有分区的hive表里时若不明显指定分区会抛出异常 insert overwrite table persons_tmp select * from persons; FAILED: ...
- Alpha Version Release Of Teamwork: Appendix 1 BUG BASH
在为期一周的发布周中,我们将app本身最后的细节完善,功能代码到位,UI不断改进和优化,团队在开始准备发布之前,对整个APP进行了一次BUG检查,每个人都部署了app在自己的android设备上进行测 ...