[国家集训队2012]middle
http://cogs.pro:8080/cogs/problem/problem.php?pid=1763
二分答案x
把区间内>=x的数设为1,<x的数设为-1
左端点在[a,b]之间,右端点在[c,d]之间的子序列中,若中位数>=x,
那么 [b+1,c-1]的区间和+[a,b]的最大右子段和+[c,d]的最大左子段和>=0
查询可以用线段树
多组询问,不能每一次二分都重设1和-1
所以用主席树
其中第i棵线段树表示<=i的都被设成了-1
因为主席树是线段树的前缀和,所以一次修改只需要改第i棵线段树,就可以得到<=i的都被设成-1的线段树
#include<cstdio>
#include<iostream>
#include<algorithm> #define N 20001 using namespace std; int n; pair<int,int>a[N]; int cnt;
int root[N],lc[N*],rc[N*]; int q[]; struct node
{
int sum,lmax,rmax; node operator + (node p)
{
node c;
c.sum=sum+p.sum;
c.lmax=max(lmax,sum+p.lmax);
c.rmax=max(p.rmax,rmax+p.sum);
return c;
} }e[N*],zero; void read(int &x)
{
x=; char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
} void build(int &k,int l,int r)
{
k=++cnt;
if(l==r)
{
e[k].sum=e[k].lmax=e[k].rmax=;
return;
}
int mid=l+r>>;
build(lc[k],l,mid);
build(rc[k],mid+,r);
e[k]=e[lc[k]]+e[rc[k]];
} void change(int pre,int &k,int l,int r,int pos)
{
k=++cnt;
if(l==r)
{
e[k].sum=e[k].lmax=e[k].rmax=-;
return;
}
int mid=l+r>>;
if(pos<=mid)
{
rc[k]=rc[pre];
change(lc[pre],lc[k],l,mid,pos);
}
else
{
lc[k]=lc[pre];
change(rc[pre],rc[k],mid+,r,pos);
}
e[k]=e[lc[k]]+e[rc[k]];
} node query(int k,int l,int r,int opl,int opr)
{
if(opl>opr) return zero;
if(l>=opl && r<=opr) return e[k];
int mid=l+r>>;
if(opr<=mid) return query(lc[k],l,mid,opl,opr);
if(opl>mid) return query(rc[k],mid+,r,opl,opr);
return query(lc[k],l,mid,opl,opr)+query(rc[k],mid+,r,opl,opr);
} bool check(int pos)
{
if(query(root[pos],,n,q[],q[]).rmax+query(root[pos],,n,q[]+,q[]-).sum+query(root[pos],,n,q[],q[]).lmax>=) return true;
return false;
} int main()
{
freopen("nt2012_middle.in","r",stdin);
freopen("nt2012_middle.out","w",stdout);
read(n);
for(int i=;i<=n;++i)
{
read(a[i].first);
a[i].second=i;
}
sort(a+,a+n+);
build(root[],,n);
for(int i=;i<=n;++i) change(root[i-],root[i],,n,a[i].second);
int m;
read(m);
int ans=;
int l,r,mid;
while(m--)
{
for(int i=;i<;++i)
{
read(q[i]);
q[i]+=ans;
q[i]%=n;
q[i]++;
}
sort(q,q+);
l=,r=n;
while(l<=r)
{
mid=l+r>>;
if(check(mid-)) ans=mid,l=mid+;
else r=mid-;
}
ans=a[ans].first;
cout<<ans<<'\n';
}
}
1763. [国家集训队2012]middle
★★★☆ 输入文件:nt2012_middle.in
输出文件:nt2012_middle.out
简单对比
时间限制:3 s 内存限制:1024 MB
【大意】
一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整。
给你一个长度为n的序列s。
回答Q个这样的询问:s的左端点在[a,b]之间,右端点在[c,d]之间的子序列中,最大的中位数。
其中a<b<c<d。
位置也从0开始标号。
我会使用一些方式强制你在线。
【输入格式】
接下来n行按顺序给出a中的数。
接下来一行Q。
然后Q行每行a,b,c,d,我们令上个询问的答案是x(如果这是第一个询问则x=0)。
令数组q={(a+x)%n,(b+x)%n,(c+x)%n,(d+x)%n}。
将q从小到大排序之后,令真正的要询问的a=q[0],b=q[1],c=q[2],d=q[3]。
输入保证满足条件。
【输出格式】
【数据规模和约定】
1,...,5:n<=2000
0,...,19:n<=20000,Q<=25000
【样例输入】
170337785
271451044
22430280
969056313
206452321
3
3 1 0 2
2 3 1 4
3 1 4 0
【样例输出】
271451044
969056313
[国家集训队2012]middle的更多相关文章
- [国家集训队2012]middle(陈立杰)
我是萌萌的传送门 我是另一个萌萌的传送门 脑残错误毁一下午…… 其实题解早就烂大街了,然而很久之前我只知道是二分答案+主席树却想不出来这俩玩意儿怎么一块儿用的……今天又翻了几篇题解才恍然大悟,是把权值 ...
- [国家集训队2012]JZPFAR
[国家集训队2012]JZPFAR 题目 平面上有n个点.现在有m次询问,每次给定一个点(px, py)和一个整数k,输出n个点中离(px, py)的距离第k大的点的标号.如果有两个(或多个)点距离( ...
- [国家集训队2012]tree(陈立杰)
[国家集训队2012]tree(陈立杰) 题目 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有need条白色边的生成树.题目保证有解. INPUT 第一行V,E,need分别表示 ...
- 「国家集训队」middle
「国家集训队」middle 传送门 按照中位数题的套路,二分答案 \(mid\),序列中 \(\ge mid\) 记为 \(1\),\(< mid\) 的记为 \(-1\) 然后只要存在一个区间 ...
- 数据结构(动态树):[国家集训队2012]tree(伍一鸣)
[问题描述] 一棵n个点的树,每个点的初始权值为1.对于这棵树有q个操作,每个操作为以下四种操作之一: + u v c:将u到v的路径上的点的权值都加上自然数c: - u1 v1 u2 v2:将树中原 ...
- 【国家集训队2012】tree(伍一鸣)
Description 一棵n个点的树,每个点的初始权值为1.对于这棵树有q个操作,每个操作为以下四种操作之一: + u v c:将u到v的路径上的点的权值都加上自然数c: - u1 v1 u2 ...
- [COGS 1799][国家集训队2012]tree(伍一鸣)
Description 一棵n个点的树,每个点的初始权值为1.对于这棵树有q个操作,每个操作为以下四种操作之一: + u v c:将u到v的路径上的点的权值都加上自然数c: - u1 v1 u2 v2 ...
- cogs1799 [国家集训队2012]tree(伍一鸣)
LCT裸题 注意打标记之间的影响就是了 这个膜数不会爆unsigned int #include<cstdio> #include<cstdlib> #include<a ...
- BZOJ2568 [国家集训队2012]比特集合
Description 比特集合是一种抽象数据类型(Abstract Data Type) ,其包含一个集合S,并支持如下几种操作: INS M : 将元素 M 插入到集合S中: DEL M : 将集 ...
随机推荐
- jenkins +gitlab +docker 自动化部署tomcat 项目
实验环境 实验设备 三台服务器 centos 7.X 以上 内存 2-3G左右 192.168.1.195 (jenkins最新+ git 2.8+maven 3.5 +tomcat 8+java1. ...
- PowerShell 操作 Azure SQL Active Geo-Replication
前文中我们比较全面的介绍了 Azure SQL Database Active Geo-Replication 的主要特点和优势.接下来我们将从自动化的角度介绍如何通过 PowerShell 在项目中 ...
- 详细解析 nginx uri 如何匹配 location 规则
location 是 nginx 配置中出现最频繁的配置项,一个 uri 是如何与多个 location 进行匹配的? 在有多个 location 都匹配的情况下,如何决定使用哪一个 location ...
- 第十八次ScrumMeeting博客
第十八次ScrumMeeting博客 本次会议于12月8日(五)22时整在3公寓725房间召开,持续20分钟. 与会人员:刘畅.辛德泰.张安澜.赵奕.方科栋. 1. 每个人的工作(有Issue的内容和 ...
- 在Mac系统下配置PHP运行环境
概述 Mac系统对于PHP运行非常友好,我们只需要进行简单的配置便可以开始进行使用,本篇文章将一步一步地介绍Apache.PHP和MySQL的安装与配置,为开始进行开发铺好路 Apache 启动Apa ...
- 【Beta阶段】第二次Scrum Meeting!
每日任务内容: 本次会议为第二次Scrum Meeting会议~ 由于本次会议项目经理召开时间较晚,所以在公寓7层召开,所以女生没来…召开时间大家集会10分钟,经理与后端探讨20分钟. 队员 昨日完成 ...
- Alpha冲刺——day5
Alpha冲刺--day5 作业链接 Alpha冲刺随笔集 github地址 团队成员 031602636 许舒玲(队长) 031602237 吴杰婷 031602220 雷博浩 031602634 ...
- Alpha冲刺——day8
Alpha冲刺--day8 作业链接 Alpha冲刺随笔集 github地址 团队成员 031602636 许舒玲(队长) 031602237 吴杰婷 031602220 雷博浩 031602634 ...
- [问题排查]记录一次两个dubbo提供者同时在线,代码不一致导致问题的排查记录
1. 需求 有一个需求job定时5秒一次,job[消费者]调用dsc[提供者]提供的dubbo完成:先清空redis的某个key,然后再往redis中放入新的数据,这是一个定时任务,需要每隔5秒执行一 ...
- JS面向对象编程:对象
一般面向过程的写法都是写很多function,坏处:1.代码复用不好 2.函数名称容易重复冲突 下面介绍面向对象的写法: 在JS中每个函数function都是一个对象. 比如,下面这个就是一个对象,我 ...