The King’s Problem

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 2947    Accepted Submission(s): 1049

Problem Description
In
the Kingdom of Silence, the king has a new problem. There are N cities
in the kingdom and there are M directional roads between the cities.
That means that if there is a road from u to v, you can only go from
city u to city v, but can’t go from city v to city u. In order to rule
his kingdom more effectively, the king want to divide his kingdom into
several states, and each city must belong to exactly one state. What’s
more, for each pair of city (u, v), if there is one way to go from u to
v and go from v to u, (u, v) have to belong to a same state. And
the king must insure that in each state we can ether go from u to v or
go from v to u between every pair of cities (u, v) without passing any
city which belongs to other state.
  Now the king asks for your help, he wants to know the least number of states he have to divide the kingdom into.
 
Input
The first line contains a single integer T, the number of test cases. And then followed T cases.

The
first line for each case contains two integers n, m(0 < n <=
5000,0 <= m <= 100000), the number of cities and roads in the
kingdom. The next m lines each contains two integers u and v (1 <= u,
v <= n), indicating that there is a road going from city u to city
v.

 
Output
The
output should contain T lines. For each test case you should just
output an integer which is the least number of states the king have to
divide into.
 
Sample Input
1
3 2
1 2
1 3
 
Sample Output
2
 
Source
题意:有n个城市,m条有向路径。现在要建一些州,每个城市属于一个州,如果两个城市u,v可以互相到达,那么u,v属于同一个州。如果u,v在同一个州,那么u可以到达v或者v可以到达u,并且不经过其他州的城市。求最少要建几个州。
思路:因为相互可达的城市属于同一个州,进行tarjan缩点。建立的新图是一个DAG。在一个有向图中,找出最少的路径,使得这些路径经过了所有的点,并且每一条路径经过的点各不相同。这是一种最小路径覆盖问题。

转载一篇苣苣的博客:有向无环图(DAG)的最小路径覆盖

代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<map>
#include<queue>
#include<stack>
#include<vector>
#include<set>
using namespace std;
#define PI acos(-1.0)
typedef long long ll;
typedef pair<int,int> P;
const int maxn=1e4+,maxm=1e5+,inf=0x3f3f3f3f,mod=1e9+;
const ll INF=1e13+;
struct edge
{
int from,to;
int cost;
};
edge es[maxm];
priority_queue<P,vector<P>,greater<P> >que;
vector<int>G[maxn],T[maxn];
int pre[maxn],lowlink[maxn],sccno[maxn],dfs_clock,scc_cnt;
stack<int>s;
void dfs(int u)
{
pre[u]=lowlink[u]=++dfs_clock;
s.push(u);
for(int i=; i<G[u].size(); i++)
{
int v=G[u][i];
if(!pre[v])
{
dfs(v);
lowlink[u]=min(lowlink[u],lowlink[v]);
}
else if(!sccno[v])
lowlink[u]=min(lowlink[u],pre[v]);
}
if(lowlink[u]==pre[u])
{
scc_cnt++;
while(true)
{
int x=s.top();
s.pop();
sccno[x]=scc_cnt;
if(x==u) break;
}
}
}
void find_scc(int n)
{
dfs_clock=scc_cnt=;
memset(sccno,,sizeof(sccno));
memset(pre,,sizeof(pre));
for(int i=; i<=n; i++)
if(!pre[i]) dfs(i);
}
void build(int m)
{
for(int i=; i<=scc_cnt; i++) T[i].clear();
for(int i=; i<=m; i++)
{
int u=es[i].from,v=es[i].to;
if(sccno[u]==sccno[v]) continue;
T[sccno[u]].push_back(sccno[v]);
}
}
int cy[maxn],vis[maxn];
bool dfs2(int u)
{
for(int i=; i<T[u].size(); i++)
{
int v=T[u][i];
if(vis[v]) continue;
vis[v]=true;
if(cy[v]==-||dfs2(cy[v]))
{
cy[v]=u;
return true;
}
}
return false;
}
int solve(int n)
{
int ret=;
memset(cy,-,sizeof(cy));
for(int i=; i<=n; i++)
{
memset(vis,,sizeof(vis));
ret+=dfs2(i);
}
return n-ret;
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++) G[i].clear();
for(int i=; i<=m; i++)
{
int u,v;
scanf("%d%d",&u,&v);
es[i].from=u,es[i].to=v;
G[u].push_back(v);
}
find_scc(n);
build(m);
cout<<solve(scc_cnt)<<endl;
}
return ;
}

tarjan缩点+最小路径覆盖

 

HDU 3861.The King’s Problem 强联通分量+最小路径覆盖的更多相关文章

  1. HDU 3861 The King’s Problem(强连通分量+最小路径覆盖)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3861 题目大意: 在csdn王国里面, 国王有一个新的问题. 这里有N个城市M条单行路,为了让他的王国 ...

  2. HDU 3861 The King’s Problem(强连通+二分图最小路径覆盖)

    HDU 3861 The King's Problem 题目链接 题意:给定一个有向图,求最少划分成几个部分满足以下条件 互相可达的点必须分到一个集合 一个对点(u, v)必须至少有u可达v或者v可达 ...

  3. HDU 3861 The King's Problem(强连通分量缩点+最小路径覆盖)

    http://acm.hdu.edu.cn/showproblem.php?pid=3861 题意: 国王要对n个城市进行规划,将这些城市分成若干个城市,强连通的城市必须处于一个州,另外一个州内的任意 ...

  4. hdu 3861 The King’s Problem trajan缩点+二分图匹配

    The King’s Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  5. HDU 3861 The King’s Problem 最小路径覆盖(强连通分量缩点+二分图最大匹配)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3861 最小路径覆盖的一篇博客:https://blog.csdn.net/qq_39627843/ar ...

  6. hdu——3861 The King’s Problem

    The King’s Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  7. POJ 1904 King's Quest 强联通分量+输入输出外挂

    题意:国王有n个儿子,现在这n个儿子要在n个女孩里选择自己喜欢的,有的儿子可能喜欢多个,最后国王的向导给出他一个匹配.匹配有n个数,代表某个儿子和哪个女孩可以结婚.已知这些条件,要你找出每个儿子可以和 ...

  8. HDU 4606 Occupy Cities (计算几何+最短路+二分+最小路径覆盖)

    Occupy Cities Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  9. HDU 3861 The King’s Problem(tarjan缩点+最小路径覆盖:sig-最大二分匹配数,经典题)

    The King’s Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

随机推荐

  1. HTML5将<video>视频设置为页面动态背景

    <!DOCTYPE html><html><head> <title>Operation Aborted Example</title> & ...

  2. webstocket 聊天

    /** * 初始化socket **/ function initSocket(index_host){//端口号 if( !window.WebSocket ){ console.log(" ...

  3. Spring Boot Maven 打包 Jar

    Maven pom.xml 必须包含 <packaging>jar</packaging> <build> <plugins> <plugin&g ...

  4. RealtimeRendering III

    [RealtimeRendering III] 1.砖块渲染实例. 1)brick & mortar diffuse texture. 2)brick & mortar gloss t ...

  5. sqlite3调试

    [sqlite3调试] 1.adb shell 激活模拟器shell. 2.cd /data/data/com.xxx.xxx/databases 进入app 数据库目录. 3.ls 查看有哪些数据库 ...

  6. cdnbest节点安装后连不上cdn主控原因排查

    1. 查看节点程序是否启动 ps -aux |grep kangle 2. 登陆cdn节点用telnet命令查下和主控的通信,命令:telnet 主控ip 3320 3. 如果节点程序都有启动,可查看 ...

  7. sql注入(一)

    SELECT * FROM users WHERE user='uname' AND password='pass' SELECT * FROM users WHERE user='name' AND ...

  8. Spring AOP学习笔记

      Spring提供了一站式解决方案:          1) Spring Core  spring的核心功能: IOC容器, 解决对象创建及依赖关系          2) Spring Web ...

  9. CSS3 Backgrounds相关介绍

    CSS3 Backgrounds相关介绍 1.背景图片(background images)是在padding-box的左上角落脚安家的,我们可以使用background-position属性改变默认 ...

  10. vue table中使用多选的问题(翻页后如何保存已选项),联动echarts图表实现流量监控

    流量监控项目需求: 根据表格数据,添加多选功能,默认全选,根据已选项更新图表视图 1.表格需要多选 2.要联动图表,所以关键是要利用表格多选的触发回调函数 vue table中使用多选: 很简单,只需 ...