原文地址:http://freshflower.iteye.com/blog/2285272、http://freshflower.iteye.com/blog/2285286

一)服务器端

说到Socket通信, 必须要有个服务端, 打开一个端口进行监听(废话!) 可能大家都会把socket.Accept方法放在一个while(true)的循环里, 当然也没有错, 但个人认为这个不科学, 极大可能地占用服务资源. 赞成的请举手. 所以我想从另外一个方面解决这个问题. 之后是在MSDN找到SocketAsyncEventArgs的一个实例, 然后拿来改改, 有需要的同学可以看看MSDN的官方实例.https://msdn.microsoft.com/en-us/library/system.net.sockets.socketasynceventargs(v=vs.110).aspx

需要了解客户端写法的, 请参考: 客户端实现http://freshflower.iteye.com/blog/2285286

不多说, 接下来贴代码, 这个实例中需要用到几个类:

1. BufferManager类, 管理传输流的大小  原封不动地拷贝过来,

using System;
using System.Collections.Generic;
using System.Net.Sockets; namespace IOCTestServer
{
class BufferManager
{
int m_numBytes; // the total number of bytes controlled by the buffer pool
byte[] m_buffer; // the underlying byte array maintained by the Buffer Manager
Stack<int> m_freeIndexPool; //
int m_currentIndex;
int m_bufferSize; public BufferManager(int totalBytes, int bufferSize)
{
m_numBytes = totalBytes;
m_currentIndex = ;
m_bufferSize = bufferSize;
m_freeIndexPool = new Stack<int>();
} // Allocates buffer space used by the buffer pool
public void InitBuffer()
{
// create one big large buffer and divide that
// out to each SocketAsyncEventArg object
m_buffer = new byte[m_numBytes];
} // Assigns a buffer from the buffer pool to the
// specified SocketAsyncEventArgs object
//
// <returns>true if the buffer was successfully set, else false</returns>
public bool SetBuffer(SocketAsyncEventArgs args)
{ if (m_freeIndexPool.Count > )
{
args.SetBuffer(m_buffer, m_freeIndexPool.Pop(), m_bufferSize);
}
else
{
if ((m_numBytes - m_bufferSize) < m_currentIndex)
{
return false;
}
args.SetBuffer(m_buffer, m_currentIndex, m_bufferSize);
m_currentIndex += m_bufferSize;
}
return true;
} // Removes the buffer from a SocketAsyncEventArg object.
// This frees the buffer back to the buffer pool
public void FreeBuffer(SocketAsyncEventArgs args)
{
m_freeIndexPool.Push(args.Offset);
args.SetBuffer(null, , );
}
}
}

2. SocketEventPool类: 管理SocketAsyncEventArgs的一个应用池. 有效地重复使用.

using System;
using System.Collections.Generic;
using System.Net.Sockets; namespace IOCTestServer
{
class SocketEventPool
{
Stack<SocketAsyncEventArgs> m_pool; public SocketEventPool(int capacity)
{
m_pool = new Stack<SocketAsyncEventArgs>(capacity);
} public void Push(SocketAsyncEventArgs item)
{
if (item == null) { throw new ArgumentNullException("Items added to a SocketAsyncEventArgsPool cannot be null"); }
lock (m_pool)
{
m_pool.Push(item);
}
} // Removes a SocketAsyncEventArgs instance from the pool
// and returns the object removed from the pool
public SocketAsyncEventArgs Pop()
{
lock (m_pool)
{
return m_pool.Pop();
}
} // The number of SocketAsyncEventArgs instances in the pool
public int Count
{
get { return m_pool.Count; }
} public void Clear()
{
m_pool.Clear();
}
}
}

3. AsyncUserToken类: 这个可以根据自己的实际情况来定义.主要作用就是存储客户端的信息.

using System;
using System.Collections.Generic;
using System.Net;
using System.Net.Sockets; namespace IOCTestServer
{
class AsyncUserToken
{
/// <summary>
/// 客户端IP地址
/// </summary>
public IPAddress IPAddress { get; set; } /// <summary>
/// 远程地址
/// </summary>
public EndPoint Remote { get; set; } /// <summary>
/// 通信SOKET
/// </summary>
public Socket Socket { get; set; } /// <summary>
/// 连接时间
/// </summary>
public DateTime ConnectTime { get; set; } /// <summary>
/// 所属用户信息
/// </summary>
public String UserInfo { get; set; } /// <summary>
/// 数据缓存区
/// </summary>
public List<byte> Buffer { get; set; } public AsyncUserToken()
{
this.Buffer = new List<byte>();
}
}
}

4. SocketManager类: 核心,实现Socket监听,收发信息等操作.

using System;
using System.Collections.Generic;
using System.Net;
using System.Net.Sockets;
using System.Threading; namespace IOCTestServer
{
class SocketManager
{
private int m_maxConnectNum; //最大连接数
private int m_revBufferSize; //最大接收字节数
BufferManager m_bufferManager;
const int opsToAlloc = ;
Socket listenSocket; //监听Socket
SocketEventPool m_pool;
int m_clientCount; //连接的客户端数量
Semaphore m_maxNumberAcceptedClients; List<AsyncUserToken> m_clients; //客户端列表 #region 定义委托 /// <summary>
/// 客户端连接数量变化时触发
/// </summary>
/// <param name="num">当前增加客户的个数(用户退出时为负数,增加时为正数,一般为1)</param>
/// <param name="token">增加用户的信息</param>
public delegate void OnClientNumberChange(int num, AsyncUserToken token); /// <summary>
/// 接收到客户端的数据
/// </summary>
/// <param name="token">客户端</param>
/// <param name="buff">客户端数据</param>
public delegate void OnReceiveData(AsyncUserToken token, byte[] buff); #endregion #region 定义事件
/// <summary>
/// 客户端连接数量变化事件
/// </summary>
public event OnClientNumberChange ClientNumberChange; /// <summary>
/// 接收到客户端的数据事件
/// </summary>
public event OnReceiveData ReceiveClientData; #endregion #region 定义属性 /// <summary>
/// 获取客户端列表
/// </summary>
public List<AsyncUserToken> ClientList { get { return m_clients; } } #endregion /// <summary>
/// 构造函数
/// </summary>
/// <param name="numConnections">最大连接数</param>
/// <param name="receiveBufferSize">缓存区大小</param>
public SocketManager(int numConnections, int receiveBufferSize)
{
m_clientCount = ;
m_maxConnectNum = numConnections;
m_revBufferSize = receiveBufferSize;
// allocate buffers such that the maximum number of sockets can have one outstanding read and
//write posted to the socket simultaneously
m_bufferManager = new BufferManager(receiveBufferSize * numConnections * opsToAlloc, receiveBufferSize); m_pool = new SocketEventPool(numConnections);
m_maxNumberAcceptedClients = new Semaphore(numConnections, numConnections);
} /// <summary>
/// 初始化
/// </summary>
public void Init()
{
// Allocates one large byte buffer which all I/O operations use a piece of. This gaurds
// against memory fragmentation
m_bufferManager.InitBuffer();
m_clients = new List<AsyncUserToken>();
// preallocate pool of SocketAsyncEventArgs objects
SocketAsyncEventArgs readWriteEventArg; for (int i = ; i < m_maxConnectNum; i++)
{
readWriteEventArg = new SocketAsyncEventArgs();
readWriteEventArg.Completed += new EventHandler<SocketAsyncEventArgs>(IO_Completed);
readWriteEventArg.UserToken = new AsyncUserToken(); // assign a byte buffer from the buffer pool to the SocketAsyncEventArg object
m_bufferManager.SetBuffer(readWriteEventArg);
// add SocketAsyncEventArg to the pool
m_pool.Push(readWriteEventArg);
}
} /// <summary>
/// 启动服务
/// </summary>
/// <param name="localEndPoint"></param>
public bool Start(IPEndPoint localEndPoint)
{
try
{
m_clients.Clear();
listenSocket = new Socket(localEndPoint.AddressFamily, SocketType.Stream, ProtocolType.Tcp);
listenSocket.Bind(localEndPoint);
// start the server with a listen backlog of 100 connections
listenSocket.Listen(m_maxConnectNum);
// post accepts on the listening socket
StartAccept(null);
return true;
}
catch (Exception)
{
return false;
}
} /// <summary>
/// 停止服务
/// </summary>
public void Stop()
{
foreach (AsyncUserToken token in m_clients)
{
try
{
token.Socket.Shutdown(SocketShutdown.Both);
}
catch (Exception) { }
}
try
{
listenSocket.Shutdown(SocketShutdown.Both);
}
catch (Exception) { } listenSocket.Close();
int c_count = m_clients.Count;
lock (m_clients) { m_clients.Clear(); } if (ClientNumberChange != null)
ClientNumberChange(-c_count, null);
} public void CloseClient(AsyncUserToken token)
{
try
{
token.Socket.Shutdown(SocketShutdown.Both);
}
catch (Exception) { }
} // Begins an operation to accept a connection request from the client
//
// <param name="acceptEventArg">The context object to use when issuing
// the accept operation on the server's listening socket</param>
public void StartAccept(SocketAsyncEventArgs acceptEventArg)
{
if (acceptEventArg == null)
{
acceptEventArg = new SocketAsyncEventArgs();
acceptEventArg.Completed += new EventHandler<SocketAsyncEventArgs>(AcceptEventArg_Completed);
}
else
{
// socket must be cleared since the context object is being reused
acceptEventArg.AcceptSocket = null;
} m_maxNumberAcceptedClients.WaitOne();
if (!listenSocket.AcceptAsync(acceptEventArg))
{
ProcessAccept(acceptEventArg);
}
} // This method is the callback method associated with Socket.AcceptAsync
// operations and is invoked when an accept operation is complete
//
void AcceptEventArg_Completed(object sender, SocketAsyncEventArgs e)
{
ProcessAccept(e);
} private void ProcessAccept(SocketAsyncEventArgs e)
{
try
{
Interlocked.Increment(ref m_clientCount);
// Get the socket for the accepted client connection and put it into the
//ReadEventArg object user token
SocketAsyncEventArgs readEventArgs = m_pool.Pop();
AsyncUserToken userToken = (AsyncUserToken)readEventArgs.UserToken;
userToken.Socket = e.AcceptSocket;
userToken.ConnectTime = DateTime.Now;
userToken.Remote = e.AcceptSocket.RemoteEndPoint;
userToken.IPAddress = ((IPEndPoint)(e.AcceptSocket.RemoteEndPoint)).Address; lock (m_clients) { m_clients.Add(userToken); } if (ClientNumberChange != null)
ClientNumberChange(, userToken);
if (!e.AcceptSocket.ReceiveAsync(readEventArgs))
{
ProcessReceive(readEventArgs);
}
}
catch (Exception me)
{
//RuncomLib.Log.LogUtils.Info(me.Message + "\r\n" + me.StackTrace);
} // Accept the next connection request
if (e.SocketError == SocketError.OperationAborted) return;
StartAccept(e);
} void IO_Completed(object sender, SocketAsyncEventArgs e)
{
// determine which type of operation just completed and call the associated handler
switch (e.LastOperation)
{
case SocketAsyncOperation.Receive:
ProcessReceive(e);
break;
case SocketAsyncOperation.Send:
ProcessSend(e);
break;
default:
throw new ArgumentException("The last operation completed on the socket was not a receive or send");
} } // This method is invoked when an asynchronous receive operation completes.
// If the remote host closed the connection, then the socket is closed.
// If data was received then the data is echoed back to the client.
//
private void ProcessReceive(SocketAsyncEventArgs e)
{
try
{
// check if the remote host closed the connection
AsyncUserToken token = (AsyncUserToken)e.UserToken;
if (e.BytesTransferred > && e.SocketError == SocketError.Success)
{
//读取数据
byte[] data = new byte[e.BytesTransferred];
Array.Copy(e.Buffer, e.Offset, data, , e.BytesTransferred);
lock (token.Buffer)
{
token.Buffer.AddRange(data);
}
//注意:你一定会问,这里为什么要用do-while循环?
//如果当客户发送大数据流的时候,e.BytesTransferred的大小就会比客户端发送过来的要小,
//需要分多次接收.所以收到包的时候,先判断包头的大小.够一个完整的包再处理.
//如果客户短时间内发送多个小数据包时, 服务器可能会一次性把他们全收了.
//这样如果没有一个循环来控制,那么只会处理第一个包,
//剩下的包全部留在token.Buffer中了,只有等下一个数据包过来后,才会放出一个来.
do
{
//判断包的长度
byte[] lenBytes = token.Buffer.GetRange(, ).ToArray();
int packageLen = BitConverter.ToInt32(lenBytes, );
if (packageLen > token.Buffer.Count - )
{ //长度不够时,退出循环,让程序继续接收
break;
} //包够长时,则提取出来,交给后面的程序去处理
byte[] rev = token.Buffer.GetRange(, packageLen).ToArray();
//从数据池中移除这组数据
lock (token.Buffer)
{
token.Buffer.RemoveRange(, packageLen + );
}
//将数据包交给后台处理,这里你也可以新开个线程来处理.加快速度.
if (ReceiveClientData != null)
ReceiveClientData(token, rev);
//这里API处理完后,并没有返回结果,当然结果是要返回的,却不是在这里, 这里的代码只管接收.
//若要返回结果,可在API处理中调用此类对象的SendMessage方法,统一打包发送.不要被微软的示例给迷惑了.
} while (token.Buffer.Count > ); //继续接收. 为什么要这么写,请看Socket.ReceiveAsync方法的说明
if (!token.Socket.ReceiveAsync(e))
this.ProcessReceive(e);
}
else
{
CloseClientSocket(e);
}
}
catch (Exception xe)
{
//RuncomLib.Log.LogUtils.Info(xe.Message + "\r\n" + xe.StackTrace);
}
} // This method is invoked when an asynchronous send operation completes.
// The method issues another receive on the socket to read any additional
// data sent from the client
//
// <param name="e"></param>
private void ProcessSend(SocketAsyncEventArgs e)
{
if (e.SocketError == SocketError.Success)
{
// done echoing data back to the client
AsyncUserToken token = (AsyncUserToken)e.UserToken;
// read the next block of data send from the client
bool willRaiseEvent = token.Socket.ReceiveAsync(e);
if (!willRaiseEvent)
{
ProcessReceive(e);
}
}
else
{
CloseClientSocket(e);
}
} //关闭客户端
private void CloseClientSocket(SocketAsyncEventArgs e)
{
AsyncUserToken token = e.UserToken as AsyncUserToken; lock (m_clients) { m_clients.Remove(token); }
//如果有事件,则调用事件,发送客户端数量变化通知
if (ClientNumberChange != null)
ClientNumberChange(-, token);
// close the socket associated with the client
try
{
token.Socket.Shutdown(SocketShutdown.Send);
}
catch (Exception) { }
token.Socket.Close();
// decrement the counter keeping track of the total number of clients connected to the server
Interlocked.Decrement(ref m_clientCount);
m_maxNumberAcceptedClients.Release();
// Free the SocketAsyncEventArg so they can be reused by another client
e.UserToken = new AsyncUserToken();
m_pool.Push(e);
} /// <summary>
/// 对数据进行打包,然后再发送
/// </summary>
/// <param name="token"></param>
/// <param name="message"></param>
/// <returns></returns>
public void SendMessage(AsyncUserToken token, byte[] message)
{
if (token == null || token.Socket == null || !token.Socket.Connected)
return;
try
{
//对要发送的消息,制定简单协议,头4字节指定包的大小,方便客户端接收(协议可以自己定)
byte[] buff = new byte[message.Length + ];
byte[] len = BitConverter.GetBytes(message.Length);
Array.Copy(len, buff, );
Array.Copy(message, , buff, , message.Length);
//token.Socket.Send(buff); //这句也可以发送, 可根据自己的需要来选择
//新建异步发送对象, 发送消息
SocketAsyncEventArgs sendArg = new SocketAsyncEventArgs();
sendArg.UserToken = token;
sendArg.SetBuffer(buff, , buff.Length); //将数据放置进去.
token.Socket.SendAsync(sendArg);
}
catch (Exception e)
{
//RuncomLib.Log.LogUtils.Info("SendMessage - Error:" + e.Message);
}
}
}
}

5. 测试代码

SocketManager m_socket = new SocketManager(200, 1024);
            m_socket.Init();
            m_socket.Start(new IPEndPoint(IPAddress.Any, 13909));

二)客户端

与服务器不同的是客户端的实现需要多个SocketAsyncEventArgs共同协作,至少需要两个:接收的只需要一个,发送的需要一个,也可以多个,这在多线程中尤为重要,接下来说明。

客户端一般需要数据的时候,就要发起请求,在多线程环境中,请求服务器一般不希望列队等候,这样会大大拖慢程序的处理。如果发送数据包的SocketAsyncEventArgs只有一个,且当他正在工作的时候, 下一个请求也来访问,这时会抛出异常, 提示当前的套接字正在工作, 所以这不是我们愿意看到, 唯有增加SocketAsyncEventArgs对象来解决。 那么接下来的问题就是我怎么知道当前的SocketAsyncEventArgs对象是否正在工作呢. 很简单,我们新建一个MySocketEventArgs类来继承它。

1. MySocketEventArgs类

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net.Sockets;
using System.Text; namespace Plates.Client.Net
{
class MySocketEventArgs : SocketAsyncEventArgs
{ /// <summary>
/// 标识,只是一个编号而已
/// </summary>
public int ArgsTag { get; set; } /// <summary>
/// 设置/获取使用状态
/// </summary>
public bool IsUsing { get; set; } }
}

2. BufferManager类

直接使用服务器端的BufferManager类即可。

3. SocketManager类

using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Net.Sockets;
using System.Text;
using System.Threading;
using System.Threading.Tasks; namespace Plates.Client.Net
{
class SocketManager: IDisposable
{
private const Int32 BuffSize = ; // The socket used to send/receive messages.
private Socket clientSocket; // Flag for connected socket.
private Boolean connected = false; // Listener endpoint.
private IPEndPoint hostEndPoint; // Signals a connection.
private static AutoResetEvent autoConnectEvent = new AutoResetEvent(false); BufferManager m_bufferManager;
//定义接收数据的对象
List<byte> m_buffer;
//发送与接收的MySocketEventArgs变量定义.
private List<MySocketEventArgs> listArgs = new List<MySocketEventArgs>();
private MySocketEventArgs receiveEventArgs = new MySocketEventArgs();
int tagCount = ; /// <summary>
/// 当前连接状态
/// </summary>
public bool Connected { get { return clientSocket != null && clientSocket.Connected; } } //服务器主动发出数据受理委托及事件
public delegate void OnServerDataReceived(byte[] receiveBuff);
public event OnServerDataReceived ServerDataHandler; //服务器主动关闭连接委托及事件
public delegate void OnServerStop();
public event OnServerStop ServerStopEvent; // Create an uninitialized client instance.
// To start the send/receive processing call the
// Connect method followed by SendReceive method.
internal SocketManager(String ip, Int32 port)
{
// Instantiates the endpoint and socket.
hostEndPoint = new IPEndPoint(IPAddress.Parse(ip), port);
clientSocket = new Socket(hostEndPoint.AddressFamily, SocketType.Stream, ProtocolType.Tcp);
m_bufferManager = new BufferManager(BuffSize * , BuffSize);
m_buffer = new List<byte>();
} /// <summary>
/// 连接到主机
/// </summary>
/// <returns>0.连接成功, 其他值失败,参考SocketError的值列表</returns>
internal SocketError Connect()
{
SocketAsyncEventArgs connectArgs = new SocketAsyncEventArgs();
connectArgs.UserToken = clientSocket;
connectArgs.RemoteEndPoint = hostEndPoint;
connectArgs.Completed += new EventHandler<SocketAsyncEventArgs>(OnConnect); clientSocket.ConnectAsync(connectArgs);
autoConnectEvent.WaitOne(); //阻塞. 让程序在这里等待,直到连接响应后再返回连接结果
return connectArgs.SocketError;
} /// Disconnect from the host.
internal void Disconnect()
{
clientSocket.Disconnect(false);
} // Calback for connect operation
private void OnConnect(object sender, SocketAsyncEventArgs e)
{
// Signals the end of connection.
autoConnectEvent.Set(); //释放阻塞.
// Set the flag for socket connected.
connected = (e.SocketError == SocketError.Success);
//如果连接成功,则初始化socketAsyncEventArgs
if (connected)
initArgs(e);
} #region args /// <summary>
/// 初始化收发参数
/// </summary>
/// <param name="e"></param>
private void initArgs(SocketAsyncEventArgs e)
{
m_bufferManager.InitBuffer();
//发送参数
initSendArgs();
//接收参数
receiveEventArgs.Completed += new EventHandler<SocketAsyncEventArgs>(IO_Completed);
receiveEventArgs.UserToken = e.UserToken;
receiveEventArgs.ArgsTag = ;
m_bufferManager.SetBuffer(receiveEventArgs); //启动接收,不管有没有,一定得启动.否则有数据来了也不知道.
if (!e.ConnectSocket.ReceiveAsync(receiveEventArgs))
ProcessReceive(receiveEventArgs);
} /// <summary>
/// 初始化发送参数MySocketEventArgs
/// </summary>
/// <returns></returns>
MySocketEventArgs initSendArgs()
{
MySocketEventArgs sendArg = new MySocketEventArgs();
sendArg.Completed += new EventHandler<SocketAsyncEventArgs>(IO_Completed);
sendArg.UserToken = clientSocket;
sendArg.RemoteEndPoint = hostEndPoint;
sendArg.IsUsing = false;
Interlocked.Increment(ref tagCount);
sendArg.ArgsTag = tagCount;
lock (listArgs)
{
listArgs.Add(sendArg);
}
return sendArg;
} void IO_Completed(object sender, SocketAsyncEventArgs e)
{
MySocketEventArgs mys = (MySocketEventArgs)e;
// determine which type of operation just completed and call the associated handler
switch (e.LastOperation)
{
case SocketAsyncOperation.Receive:
ProcessReceive(e);
break;
case SocketAsyncOperation.Send:
mys.IsUsing = false; //数据发送已完成.状态设为False
ProcessSend(e);
break;
default:
throw new ArgumentException("The last operation completed on the socket was not a receive or send");
}
} // This method is invoked when an asynchronous receive operation completes.
// If the remote host closed the connection, then the socket is closed.
// If data was received then the data is echoed back to the client.
//
private void ProcessReceive(SocketAsyncEventArgs e)
{
try
{
// check if the remote host closed the connection
Socket token = (Socket)e.UserToken;
if (e.BytesTransferred > && e.SocketError == SocketError.Success)
{
//读取数据
byte[] data = new byte[e.BytesTransferred];
Array.Copy(e.Buffer, e.Offset, data, , e.BytesTransferred);
lock (m_buffer)
{
m_buffer.AddRange(data);
} do
{
//注意: 这里是需要和服务器有协议的,我做了个简单的协议,就是一个完整的包是包长(4字节)+包数据,便于处理,当然你可以定义自己需要的;
//判断包的长度,前面4个字节.
byte[] lenBytes = m_buffer.GetRange(, ).ToArray();
int packageLen = BitConverter.ToInt32(lenBytes, );
if (packageLen <= m_buffer.Count - )
{
//包够长时,则提取出来,交给后面的程序去处理
byte[] rev = m_buffer.GetRange(, packageLen).ToArray();
//从数据池中移除这组数据,为什么要lock,你懂的
lock (m_buffer)
{
m_buffer.RemoveRange(, packageLen + );
}
//将数据包交给前台去处理
DoReceiveEvent(rev);
}
else
{ //长度不够,还得继续接收,需要跳出循环
break;
}
} while (m_buffer.Count > );
//注意:你一定会问,这里为什么要用do-while循环?
//如果当服务端发送大数据流的时候,e.BytesTransferred的大小就会比服务端发送过来的完整包要小,
//需要分多次接收.所以收到包的时候,先判断包头的大小.够一个完整的包再处理.
//如果服务器短时间内发送多个小数据包时, 这里可能会一次性把他们全收了.
//这样如果没有一个循环来控制,那么只会处理第一个包,
//剩下的包全部留在m_buffer中了,只有等下一个数据包过来后,才会放出一个来.
//继续接收
if (!token.ReceiveAsync(e))
this.ProcessReceive(e);
}
else
{
ProcessError(e);
}
}
catch (Exception xe)
{
Console.WriteLine(xe.Message);
}
} // This method is invoked when an asynchronous send operation completes.
// The method issues another receive on the socket to read any additional
// data sent from the client
//
// <param name="e"></param>
private void ProcessSend(SocketAsyncEventArgs e)
{
if (e.SocketError != SocketError.Success)
{
ProcessError(e);
}
} #endregion #region read write // Close socket in case of failure and throws
// a SockeException according to the SocketError.
private void ProcessError(SocketAsyncEventArgs e)
{
Socket s = (Socket)e.UserToken;
if (s.Connected)
{
// close the socket associated with the client
try
{
s.Shutdown(SocketShutdown.Both);
}
catch (Exception)
{
// throws if client process has already closed
}
finally
{
if (s.Connected)
{
s.Close();
}
connected = false;
}
}
//这里一定要记得把事件移走,如果不移走,当断开服务器后再次连接上,会造成多次事件触发.
foreach (MySocketEventArgs arg in listArgs)
arg.Completed -= IO_Completed;
receiveEventArgs.Completed -= IO_Completed; if (ServerStopEvent != null)
ServerStopEvent();
} // Exchange a message with the host.
internal void Send(byte[] sendBuffer)
{
if (connected)
{
//先对数据进行包装,就是把包的大小作为头加入,这必须与服务器端的协议保持一致,否则造成服务器无法处理数据.
byte[] buff = new byte[sendBuffer.Length + ];
Array.Copy(BitConverter.GetBytes(sendBuffer.Length), buff, );
Array.Copy(sendBuffer, , buff, , sendBuffer.Length);
//查找有没有空闲的发送MySocketEventArgs,有就直接拿来用,没有就创建新的.So easy!
MySocketEventArgs sendArgs = listArgs.Find(a => a.IsUsing == false);
if (sendArgs == null) {
sendArgs = initSendArgs();
}
lock (sendArgs) //要锁定,不锁定让别的线程抢走了就不妙了.
{
sendArgs.IsUsing = true;
sendArgs.SetBuffer(buff, , buff.Length);
}
clientSocket.SendAsync(sendArgs);
}
else
{
throw new SocketException((Int32)SocketError.NotConnected);
}
} /// <summary>
/// 使用新进程通知事件回调
/// </summary>
/// <param name="buff"></param>
private void DoReceiveEvent(byte[] buff)
{
if (ServerDataHandler == null) return;
//ServerDataHandler(buff); //可直接调用.
//但我更喜欢用新的线程,这样不拖延接收新数据.
Thread thread = new Thread(new ParameterizedThreadStart((obj) =>
{
ServerDataHandler((byte[])obj);
}));
thread.IsBackground = true;
thread.Start(buff);
} #endregion #region IDisposable Members // Disposes the instance of SocketClient.
public void Dispose()
{
autoConnectEvent.Close();
if (clientSocket.Connected)
{
clientSocket.Close();
}
} #endregion
}
}

4.使用类 Request

这是原作者给出了静态类

using Newtonsoft.Json;
using Plates.Common;
using Plates.Common.Base;
using Plates.Common.Beans;
using RuncomLib.File;
using RuncomLib.Log;
using RuncomLib.Text;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Net.Sockets;
using System.Security.Cryptography;
using System.Text;
using System.Threading;
using System.Timers; namespace Plates.Client.Net
{
class Request
{
//定义,最好定义成静态的, 因为我们只需要一个就好
static SocketManager smanager = null;
static UserInfoModel userInfo = null; //定义事件与委托
public delegate void ReceiveData(object message);
public delegate void ServerClosed();
public static event ReceiveData OnReceiveData;
public static event ServerClosed OnServerClosed; /// <summary>
/// 心跳定时器
/// </summary>
static System.Timers.Timer heartTimer = null;
/// <summary>
/// 心跳包
/// </summary>
static ApiResponse heartRes = null; /// <summary>
/// 判断是否已连接
/// </summary>
public static bool Connected
{
get { return smanager != null && smanager.Connected; }
} /// <summary>
/// 已登录的用户信息
/// </summary>
public static UserInfoModel UserInfo
{
get { return userInfo; }
} #region 基本方法 /// <summary>
/// 连接到服务器
/// </summary>
/// <returns></returns>
public static SocketError Connect()
{
if (Connected) return SocketError.Success;
//我这里是读取配置,
string ip = Config.ReadConfigString("socket", "server", "");
int port = Config.ReadConfigInt("socket", "port", );
if (string.IsNullOrWhiteSpace(ip) || port <= ) return SocketError.Fault; //创建连接对象, 连接到服务器
smanager = new SocketManager(ip, port);
SocketError error = smanager.Connect();
if (error == SocketError.Success){
//连接成功后,就注册事件. 最好在成功后再注册.
smanager.ServerDataHandler += OnReceivedServerData;
smanager.ServerStopEvent += OnServerStopEvent;
}
return error;
} /// <summary>
/// 断开连接
/// </summary>
public static void Disconnect()
{
try
{
smanager.Disconnect();
}
catch (Exception) { }
} /// <summary>
/// 发送请求
/// </summary>
/// <param name="request"></param>
/// <returns></returns>
public static bool Send(ApiResponse request)
{
return Send(JsonConvert.SerializeObject(request));
} /// <summary>
/// 发送消息
/// </summary>
/// <param name="message">消息实体</param>
/// <returns>True.已发送; False.未发送</returns>
public static bool Send(string message)
{
if (!Connected) return false; byte[] buff = Encoding.UTF8.GetBytes(message);
//加密,根据自己的需要可以考虑把消息加密
//buff = AESEncrypt.Encrypt(buff, m_aesKey);
smanager.Send(buff);
return true;
} /// <summary>
/// 发送字节流
/// </summary>
/// <param name="buff"></param>
/// <returns></returns>
static bool Send(byte[] buff)
{
if (!Connected) return false;
smanager.Send(buff);
return true;
} /// <summary>
/// 接收消息
/// </summary>
/// <param name="buff"></param>
private static void OnReceivedServerData(byte[] buff)
{
//To do something
//你要处理的代码,可以实现把buff转化成你具体的对象, 再传给前台
if (OnReceiveData != null)
OnReceiveData(buff);
} /// <summary>
/// 服务器已断开
/// </summary>
private static void OnServerStopEvent()
{
if (OnServerClosed != null)
OnServerClosed();
} #endregion #region 心跳包
//心跳包也是很重要的,看自己的需要了, 我只定义出来, 你自己找个地方去调用吧
/// <summary>
/// 开启心跳
/// </summary>
private static void StartHeartbeat()
{
if (heartTimer == null)
{
heartTimer = new System.Timers.Timer();
heartTimer.Elapsed += TimeElapsed;
}
heartTimer.AutoReset = true; //循环执行
heartTimer.Interval = * ; //每30秒执行一次
heartTimer.Enabled = true;
heartTimer.Start(); //初始化心跳包
heartRes = new ApiResponse((int)ApiCode.心跳);
heartRes.data = new Dictionary<string, object>();
heartRes.data.Add("beat", Function.Base64Encode(userInfo.nickname + userInfo.userid + DateTime.Now.ToString("HH:mm:ss")));
} /// <summary>
/// 定时执行
/// </summary>
/// <param name="source"></param>
/// <param name="e"></param>
static void TimeElapsed(object source, ElapsedEventArgs e)
{
Request.Send(heartRes);
} #endregion
}
}

5.其它临时代码

因文章中某些类不可用,故应急添加一些类和相应的修改,供测试通过。

ApiResponse类:

using System.Collections.Generic;

namespace IOCTestClient
{
internal class ApiResponse
{
private int 心跳; public ApiResponse(int 心跳)
{
this.心跳 = 心跳;
}
public Dictionary<string, object> data { get; set; }
}
}

客户端和服务器中的UserInfoModel 类型临时改为 String。

6.测试代码

Request.Connect();
            Request.Send("XXXXXXXX");
            System.Console.ReadKey();

对照资源:http://blog.csdn.net/sqldebug_fan/article/details/17556353,包括客户端和服务器,更细致一些。

在实际测试中,对照的两份代码都是用VS2015测试通过,但因种种原因,效率方面未测试。

(转)C#SocketAsyncEventArgs实现高效能多并发TCPSocket通信的更多相关文章

  1. C#SocketAsyncEventArgs实现高效能多并发TCPSocket通信 (服务器实现)

    http://freshflower.iteye.com/blog/2285272 想着当初到处找不到相关资料来实现.net的Socket通信的痛苦与心酸, 于是将自己写的代码公布给大家, 让大家少走 ...

  2. 高效能人士必知铁律--note

    偶然看到了<高效能人士 必知铁律>这本书,我比较少看成功学,但是这本书把很多著名的成功学书籍整理出来,有时会让你耳目一新,有些观点尽管是常识,但是却加深了你对它们的理解,比如: 只要在积极 ...

  3. 高效能团队协作的JIRA实践

    http://www.csdn.net/article/2015-05-21/2824739?utm_source=tuicool 高效能团队是企业生存和发展的基石.任何企业面对当下的激烈竞争,要想脱 ...

  4. [转]如何写出高效能TSQL -深入浅出SQL Server Relational Engine (含 SQL 2014 in-memory Engine)

    [转]如何写出高效能TSQL -深入浅出SQL Server Relational Engine (含 SQL 2014 in-memory Engine) http://blogs.technet. ...

  5. 《高效能程序员的修炼》读后感 By Yong Zhang

    想不到我工作中经常GOOGLE搜寻技术问题的stack overflow网站的创办人竟然是<高效能程序员的修炼>一书的作者!看了一遍全书,果然名不虚传. 本书更多的从人文角度而非技术角度去 ...

  6. 高效能Windows人士的N个习惯之一:启动篇

    接触电脑十多年,经历了各种折腾阶段,这几年开始沉静下来,不再追求花哨的界面与应用,只注重工作的效率,逐渐养成了一套自己的操作习惯,感觉不错,特撰文分享.标题借用了一下<高效能人士的七个习惯> ...

  7. DevOps|高效能敏捷交付组织:特性团队(FeatureTeam)+Scrum

    这是<研发效能组织能力建设>的第三篇.特性团队和Scrum,这两个定义我们在之前的文章中都详细介绍了.这两个组织模式或者说管理实践,我都用过所以有些时候特别有感触.书本上纯粹的模式很容易理 ...

  8. [转载] 高流量大并发Linux TCP 性能调优

    原文: http://cenwj.com/2015/2/25/19 本文参考文章为: 优化Linux下的内核TCP参数来提高服务器负载能力 Linux Tuning 本文所面对的情况为: 高并发数 高 ...

  9. 高效能程序员的七个习惯【csdn】

    从网上看到的,感觉挺不错的! Beautiful is better than ugly. Explicit is better than implicit. Simple is better tha ...

随机推荐

  1. C# 线程:定时器的使用

    转载请注明出处:http://www.cnblogs.com/KeenLeung/p/3911556.html Timer类:设置一个定时器,定时执行用户指定的函数. 定时器启动后,系统将自动建立一个 ...

  2. mobx-state-tree 知识点

    中文教程:https://github.com/chenxiaochun/mobx-state-tree 比较好的介绍文章:https://tech.youzan.com/mobx_vs_redux/ ...

  3. python之numpy.power()数组元素求n次方

    numpy.power(x1, x2) 数组的元素分别求n次方.x2可以是数字,也可以是数组,但是x1和x2的列数要相同. >>> x1 = range(6) >>> ...

  4. c/c++ 获取数组长度

    在C/C++中并没有提供直接获取数组长度的函数 c/c++ 获取数组长度其中一种方法是使用sizeof(array) / sizeof(array[0]). 在C语言中习惯上在使用时都把它定义成一个宏 ...

  5. textwrap 笔记

    import textwrap s = """Look into my eyes, look into my eyes, the eyes, the eyes, the ...

  6. oracle删除表垃圾

    1,完全删除表: drop table 表名 purge; 2,删除表后永久删除-回收站表 purge table 表名: 3,清空垃圾回收站 purge recyclebin; 4, 查询所有此类表 ...

  7. 【转】用python比对数据库表数据的脚本

    最近在做一个数据库异构复制的项目,客户表示需要一个数据比对的工具,我就自己写了一个异构数据库的比对python脚本.这个比对脚本只能比对数量,不能比对具体的记录.使用的sql语句也是最基础的selec ...

  8. python条件判断,真假

    整形 非0即真 字符串 非空即真 列表,元组,字典,集合为空时 为假 函数 返回值为空(即函数中只写了return后面没参数),为0(即return 0),为空的列表,字典,集合.那么条件判断函数也是 ...

  9. Office CVE-2017-8570远程代码执行漏洞复现

    实验环境 操作机:Kali Linux IP:172.16.11.2 目标机:windows7 x64 IP:172.16.12.2 实验目的 掌握漏洞的利用方法 实验工具 Metaspliot:它是 ...

  10. Docker Dockerfile 一

    1.概述 创建Docker镜像的方式有三种 docker commit命令:由容器生成镜像: Dockerfile文件+docker build命令: 从本地文件系统导入:OpenVZ的模板. 关于这 ...