SPFA是改良后的BellmanFord(在刘汝佳的入门经典2上,甚至直接将SPFA归为BellmanFord的队列优化版本)。

这是算法的伪代码

d[s] = 0, 其余d[?] = INF;
将s入队,并做标记;
do{
取队首u。
for each (u, v){
如果d[v] > d[u] + dist(u→v)
d[v] = d[u] + dist(u→v)
如果v不在队里
v入队
}
}until 队列为空

  

SPFA最短路算法的更多相关文章

  1. 【算法】祭奠spfa 最短路算法dijspfa

    题目链接 本题解来源 其他链接 卡spfa的数据组 题解堆优化的dijkstra 题解spfa讲解 来自以上题解的图片来自常暗踏阴 使用前向星链表存图 直接用队列优化spfa struct cmp { ...

  2. SPFA 最短路算法

    SPFA算法 1.什么是spfa算法? SPFA 算法是 Bellman-Ford算法 的队列优化算法的别称,通常用于求含负权边的单源最短路径,以及判负权环.SPFA一般情况复杂度是O(m)O(m) ...

  3. dijkstra,belllman-ford,spfa最短路算法

    参考博客 时间复杂度对比: Dijkstra:  O(n2) Dijkstra + 优先队列(堆优化):  O(E+V∗logV) SPFA:  O(k∗E) ,k为每个节点进入队列的次数,一般小于等 ...

  4. 【最短路算法】Dijkstra+heap和SPFA的区别

    单源最短路问题(SSSP)常用的算法有Dijkstra,Bellman-Ford,这两个算法进行优化,就有了Dijkstra+heap.SPFA(Shortest Path Faster Algori ...

  5. 最短路算法详解(Dijkstra/SPFA/Floyd)

    新的整理版本版的地址见我新博客 http://www.hrwhisper.me/?p=1952 一.Dijkstra Dijkstra单源最短路算法,即计算从起点出发到每个点的最短路.所以Dijkst ...

  6. 最短路算法(floyed+Dijkstra+bellman-ford+SPFA)

    最短路算法简单模板 一.floyed算法 首先对于floyed算法来说就是最短路径的动态规划解法,时间复杂度为O(n^3) 适用于图中所有点与点之间的最短路径的算法,一般适用于点n较小的情况. Flo ...

  7. 算法专题 | 10行代码实现的最短路算法——Bellman-ford与SPFA

    今天是算法数据结构专题的第33篇文章,我们一起来聊聊最短路问题. 最短路问题也属于图论算法之一,解决的是在一张有向图当中点与点之间的最短距离问题.最短路算法有很多,比较常用的有bellman-ford ...

  8. 近十年one-to-one最短路算法研究整理【转】

    前言:针对单源最短路算法,目前最经典的思路即标号算法,以Dijkstra算法和Bellman-Ford算法为根本演进了各种优化技术和算法.针对复杂网络,传统的优化思路是在数据结构和双向搜索上做文章,或 ...

  9. 浅谈k短路算法

    An Old but Classic Problem 给定一个$n$个点,$m$条边的带正权有向图.给定$s$和$t$,询问$s$到$t$的所有权和为正路径中,第$k$短的长度. Notice 定义两 ...

随机推荐

  1. 3-51单片机ESP8266学习-AT指令(学会刷固件)

    前言:体验一下刷固件(给单片机更新程序) 上一篇链接  http://www.cnblogs.com/yangfengwu/p/8757036.html 源码链接:https://pan.baidu. ...

  2. Oracle 批量修改某个用户下表的表空间

    说明:一般来说要修改表的表空间需要同时修改表的表空间和其对应的索引表空间,并且在修改含有BOLB字段的表的表空间时又不一样,具体请参考末尾的链接 思路:拼凑一个满足条件的批处理查询语句,将查询的结果复 ...

  3. jQuery调用Asp.Net后台方法

    常用的ajax就不讲了,这里主要是说通过ajax调用asp.net后台的cs文件暴露的方法. 前台: <%@ Page Language="C#" AutoEventWire ...

  4. Luogu P1198 [JSOI2008]最大数

    我会用高级(???)的单调栈来打这道题吗? 线段树即可水过. 假设这个数列刚开始所有数都是0,然后我们每次只要进行一个点的修改和区间求和即可. 这不就是 线段树大法. 只要用一个len记录一下当前数列 ...

  5. C++ 对引用的深入理解

    观看了唐老师讲解的一节<第5课 - 引用的本质分析>感觉非常不错,有深度不废话,我喜欢--- 再此总结下,并且奉上视频下载地址--- 360网盘下载地址: https://yunpan.c ...

  6. falsk之文件上传

    在使用flask定义路由完成文件上传时,定义upload视图函数 from flask import Flask, render_template from werkzeug.utils import ...

  7. effective c++ 笔记 (18-22)

    //---------------------------15/04/06---------------------------- //#18 让接口容易被正确使用,不易被误用 { //  1:为了防 ...

  8. 【Android UI设计与开发】第02期:引导界面(二)使用ViewPager实现欢迎引导页面

    本系列文章都会以一个程序的实例开发为主线来进行讲解,以求达到一个循序渐进的学习效果,这样更能加深大家对于程序为什么要这样写的用意,理论加上实际的应用才能达到事半功倍的效果,不是吗? 最下方有源码的下载 ...

  9. Jmeter(二十二)_jenkins配置gitlab插件与ant插件

    Docker部署接口自动化持续集成环境第四步,代码上传到远程仓库! 接上文:脚本上传Gitlab 服务器中的Jenkins通过Gitlab插件读取远程Git远程仓库中的代码,然后通过ant插件进行构建 ...

  10. 一款基于Zigbee技术的智慧鱼塘系统研究与设计

    在现代鱼塘养鱼中,主要困扰渔农的就是养殖成本问题.而鱼塘养殖成本最高的就是养殖的人工费,喂养的饲料费和鱼塘中高达几千瓦增氧机的消耗的电费.实现鱼塘自动化养殖将会很好地解决上述问题,大大提高渔农的经济效 ...