Description

有一个树形结构的宾馆,n个房间,n-1条无向边,每条边的长度相同,任意两个房间可以相互到达。吉丽要给他的三个妹子各开(一个)房(间)。三个妹子住的房间要互不相同(否则要打起来了),为了让吉丽满意,你需要让三个房间两两距离相同。

有多少种方案能让吉丽满意?

Input

第一行一个数n。

接下来n-1行,每行两个数x,y,表示x和y之间有一条边相连。

Output

让吉丽满意的方案数。

Sample Input

7

1 2

5 7

2 5

2 3

5 6

4 5

Sample Output

5

HINT

【样例解释】

{1,3,5},{2,4,6},{2,4,7},{2,6,7},{4,6,7}

【数据范围】

n≤5000

Solution

先写了个普通的方法,

就是枚举每一个点,计算这个点为选的三个点的lca的方案数

这个只要在枚举了lca后遍历它的每个子树,当前子树内的一个点可以贡献之前的子树中深度与它相同的点中选两个的方案数,处理一下就好了

以下代码是可以过的:

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=5000+10;
int n,e,beg[MAXN],nex[MAXN<<1],to[MAXN<<1],sum[MAXN];
ll ans,val[2][MAXN];
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void insert(int x,int y)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
}
inline void dfs(int x,int f,int dep)
{
ans+=val[1][dep],sum[dep]++;
for(register int i=beg[x];i;i=nex[i])
if(to[i]==f)continue;
else dfs(to[i],x,dep+1);
}
int main()
{
read(n);
for(register int i=1;i<n;++i)
{
int u,v;read(u);read(v);
insert(u,v);insert(v,u);
}
for(register int i=1;i<=n;++i)
{
for(register int j=beg[i];j;j=nex[j])
{
dfs(to[j],i,1);
for(register int j=1;j<=n;++j)val[1][j]+=val[0][j]*sum[j],val[0][j]+=sum[j],sum[j]=0;
}
for(register int j=1;j<=n;++j)val[0][j]=val[1][j]=0;
}
write(ans,'\n');
return 0;
}

之后为了做升级版,写了个没用长链剖分的 \(O(n^2)\) dp,也是当做一个过渡吧

设 \(f[u][k]\) 表示 \(u\) 的子树中距离 \(u\) 为 \(k\) 的点的个数, \(g[u][k]\) 表示 \(u\) 的子树中到LCA距离为 \(d\) ,\(u\) 到LCA距离为 \(d−k\) 的点对的数量。

转移就见程序吧,因为转移的顺序是对转移有影响的

这个程序被卡空间了,过不去,但是正确性是能够保证的:

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=5000+10;
int n,e,beg[MAXN],nex[MAXN<<1],to[MAXN<<1];
ll f[MAXN][MAXN],g[MAXN][MAXN],ans;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void insert(int x,int y)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
}
inline void dfs(int x,int p)
{
f[x][0]=1;
for(register int i=beg[x];i;i=nex[i])
if(to[i]==p)continue;
else
{
dfs(to[i],x);
for(register int j=0;j<=n;++j)
{
ans+=f[x][j]*g[to[i]][j+1]+(j?f[to[i]][j-1]*g[x][j]:0);
g[x][j]+=g[to[i]][j+1]+(j?f[x][j]*f[to[i]][j-1]:0);
if(j)f[x][j]+=f[to[i]][j-1];
}
}
}
int main()
{
read(n);
for(register int i=1;i<n;++i)
{
int u,v;read(u);read(v);
insert(u,v);insert(v,u);
}
dfs(1,0);
write(ans,'\n');
return 0;
}

【刷题】BZOJ 3522 [Poi2014]Hotel的更多相关文章

  1. BZOJ.3522.[POI2014]Hotel(DP)

    题目链接 BZOJ 洛谷 以为裸点分治,但数据范围怎么这么小?快打完了发现不对.. n^2做的话其实是个水题.. 枚举每一个点为根,为了不重复计算,我们要求所求的三个点必须分别位于三棵子树上. 考虑当 ...

  2. bzoj 3522: [Poi2014]Hotel

    呵呵,一开始天真的我以为求个 西格玛 C(??,3)就好了.. (题解:比枚举2个数的再多一个,,一样搞) #include <bits/stdc++.h> #define LL long ...

  3. 【刷题】BZOJ 4543 [POI2014]Hotel加强版

    Description 同OJ3522 数据范围:n<=100000 Solution dp的设计见[刷题]BZOJ 3522 [Poi2014]Hotel 然后发现dp的第二维与深度有关,于是 ...

  4. 3522: [Poi2014]Hotel

    3522: [Poi2014]Hotel Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 253  Solved: 117[Submit][Status ...

  5. 3522: [Poi2014]Hotel( 树形dp )

    枚举中点x( 即选出的三个点 a , b , c 满足 dist( x , a ) = dist( x , b ) = dist( x , c ) ) , 然后以 x 为 root 做 dfs , 显 ...

  6. BZOJ.4543.[POI2014]Hotel加强版(长链剖分 树形DP)

    题目链接 弱化版:https://www.cnblogs.com/SovietPower/p/8663817.html. 令\(f[x][i]\)表示\(x\)的子树中深度为\(i\)的点的个数,\( ...

  7. bzoj 4543: [POI2014]Hotel加强版

    Description 给出一棵树求三元组 \((x,y,z)\,,x<y<z\) 满足三个点两两之间距离相等,求三元组的数量 Solution 考虑暴力 \(DP\) 设 \(f[i][ ...

  8. ZJOI2019一轮停课刷题记录

    Preface 菜鸡HL终于狗来了他的省选停课,这次的时间很长,暂定停到一试结束,不过有机会二试的话还是可以搞到4月了 这段时间的学习就变得量大而且杂了,一般以刷薄弱的知识点和补一些新的奇怪技巧为主. ...

  9. BZOJ3522: [Poi2014]Hotel

    3522: [Poi2014]Hotel Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 195  Solved: 85[Submit][Status] ...

随机推荐

  1. Kafka下的生产消费者模式与订阅发布模式

    原文:https://blog.csdn.net/zwgdft/article/details/54633105   在RabbitMQ下的生产消费者模式与订阅发布模式一文中,笔者以“数据接入”和“事 ...

  2. 20155222卢梓杰 实验五 MSF基础应用

    实验五 MSF基础应用 1.一个主动攻击实践,如ms17_010_eternalblue漏洞; 本次攻击目标是win7虚拟机 首先进行相应配置 然后点launch 就成功了 针对win7的漏洞还是相对 ...

  3. # 2017-2018-2 20155319『网络对抗技术』Exp4:恶意代码分析

    2017-2018-2 20155319『网络对抗技术』Exp4:恶意代码分析 实验目标与基础问题 ++1.实践目标++ 监控你自己系统的运行状态,看有没有可疑的程序在运行. 分析一个恶意软件,就分析 ...

  4. 汇编 ADD指令

    知识点: 加法汇编指令ADD 一.加法指令 ADD(Addition) 格式 格式: ADD A,B //A=A+B; 功能: 两数相加 . OPRD1为任一通用寄存器或存储器操作数,可以是任意一个 ...

  5. 4.Xilinx RapidIO核详解

    转自https://www.cnblogs.com/liujinggang/p/10072115.html 一.RapidIO核概述 RapidIO核的设计标准来源于RapidIO Interconn ...

  6. 【ORACLE】碎片整理

    alter table test enable row movement; alter table test shrink space; execute dbms_stats.gather_table ...

  7. Flask学习-Flask基础之WSGI

    一.WSGI为什么会出现? 在学习一个东西之前,我们肯定想知道:它为什么会出现?那么,WSGI为什么会出现呢? 我们知道,部署一个web应用,经常需要使用nginx.apache或者IIS等web服务 ...

  8. stl源码剖析 详细学习笔记 算法(2)

    //---------------------------15/03/29---------------------------- //****************************set相 ...

  9. Appium+python自动化4-元素定位uiautomatorviewer

    前言 环境搭建好了,下一步元素定位,元素定位本篇主要介绍如何使用uiautomatorviewer,通过定位到页面上的元素,然后进行相应的点击等操作. uiautomatorviewer是androi ...

  10. IT简历

    对很多IT毕业生来说,写简历投简历是必不可少的.一个好的简历已是面试成功的一半. 简历的目的是为了引人注意,争取让HR主动联系你去面试,不可避免的在简历中掺杂着一些水分,但是能争取到面试机会,再与HR ...