【BZOJ3745】Norma(CDQ分治)

题面

BZOJ

洛谷

题解

这种问题直接做不好做,显然需要一定的优化。考虑\(CDQ\)分治。

现在唯一需要考虑的就是跨越当前中间节点的所有区间如何计算答案了。

从\(mid\)开始向左枚举左端点,考虑右端点的贡献。那么我们在右侧记录两个指针\(p,q\),分别表示左侧的最大值和最小值第一次改变的位置。这两个指针会把整个序列分成三段。

第一段最大值和最小值都是左侧最大最小值,直接计算区间长度和就好了。

第二段是最大值和最小值中一个被改变了,分情况讨论一下,维护右侧的区间最大最小值就可以直接算了。第三部分是最大值和最小值都被改变了,那么把式子写出来,维护一个前缀就好了。

时间复杂度\(O(nlogn)\)。可能实现要仔细想清楚,可以看看代码。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
#define ll long long
#define MAX 500500
#define MOD 1000000000
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int S(int l,int r){return 1ll*(l+r)*(r-l+1)/2%MOD;}
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;if(x<0)x+=MOD;}
int n,ans,a[MAX];
int sm[MAX],sp[MAX],smx[MAX],smn[MAX],smxp[MAX],smnp[MAX],mnv[MAX],mxv[MAX];
void CDQ(int l,int r)
{
if(l==r){add(ans,1ll*a[l]*a[l]%MOD);return;}
int mid=(l+r)>>1;CDQ(l,mid);CDQ(mid+1,r);
int mn=a[mid],mx=a[mid];
sm[mid]=sp[mid]=smx[mid]=smn[mid]=smxp[mid]=smnp[mid]=0;
for(int i=mid+1;i<=r;++i)
if(i==mid+1)
{
mnv[i]=mxv[i]=smx[i]=smn[i]=a[i];
smnp[i]=smxp[i]=1ll*a[i]*i%MOD;
sm[i]=1ll*a[i]*a[i]%MOD;sp[i]=1ll*i*a[i]%MOD*a[i]%MOD;
}
else
{
mnv[i]=min(mnv[i-1],a[i]);
mxv[i]=max(mxv[i-1],a[i]);
add(smn[i]=smn[i-1],mnv[i]);
add(smx[i]=smx[i-1],mxv[i]);
add(smnp[i]=smnp[i-1],1ll*mnv[i]*i%MOD);
add(smxp[i]=smxp[i-1],1ll*mxv[i]*i%MOD);
add(sm[i]=sm[i-1],1ll*mnv[i]*mxv[i]%MOD);
add(sp[i]=sp[i-1],1ll*i*mnv[i]%MOD*mxv[i]%MOD);
}
for(int i=mid,p=mid,q=mid;i>=l;--i)
{
mn=min(mn,a[i]);mx=max(mx,a[i]);
while(p<r&&mnv[p+1]>=mn)++p;
while(q<r&&mxv[q+1]<=mx)++q;
add(ans,1ll*S(mid-i+2,min(p,q)-i+1)*mn%MOD*mx%MOD);
if(p<q)add(ans,((smnp[q]-smnp[p])-1ll*(smn[q]-smn[p])*(i-1)%MOD+MOD)*mx%MOD);
if(q<p)add(ans,((smxp[p]-smxp[q])-1ll*(smx[p]-smx[q])*(i-1)%MOD+MOD)*mn%MOD);
add(ans,(((sp[r]-sp[max(p,q)])-1ll*(sm[r]-sm[max(p,q)])*(i-1)%MOD+MOD)%MOD));
}
}
int main()
{
n=read();
for(int i=1;i<=n;++i)a[i]=read();
CDQ(1,n);printf("%d\n",ans);
return 0;
}

【BZOJ3745】Norma(CDQ分治)的更多相关文章

  1. 【BZOJ3745】[Coci2015]Norma cdq分治

    [BZOJ3745][Coci2015]Norma Description Input 第1行,一个整数N: 第2~n+1行,每行一个整数表示序列a. Output 输出答案对10^9取模后的结果. ...

  2. NORMA2 - Norma [cdq分治]

    题面 洛谷 你有一个长度为n的序列,定义这个序列中每个区间的价值是 \(Cost(i,j)=Min(Ai...Aj)∗Max(Ai...Aj)∗(j−i+1)Cost(i,j)=Min(A_{i}.. ...

  3. 【CF526F】Pudding Monsters cdq分治

    [CF526F]Pudding Monsters 题意:给你一个排列$p_i$,问你有对少个区间的值域段是连续的. $n\le 3\times 10^5$ 题解:bzoj3745 Norma 的弱化版 ...

  4. 【教程】简易CDQ分治教程&学习笔记

    前言 辣鸡蒟蒻__stdcall终于会CDQ分治啦!       CDQ分治是我们处理各类问题的重要武器.它的优势在于可以顶替复杂的高级数据结构,而且常数比较小:缺点在于必须离线操作. CDQ分治的基 ...

  5. BZOJ 2683 简单题 ——CDQ分治

    [题目分析] 感觉CDQ分治和整体二分有着很本质的区别. 为什么还有许多人把他们放在一起,也许是因为代码很像吧. CDQ分治最重要的是加入了时间对答案的影响,x,y,t三个条件. 排序解决了x ,分治 ...

  6. HDU5618 & CDQ分治

    Description: 三维数点 Solution: 第一道cdq分治...感觉还是很显然的虽然题目不能再傻逼了... Code: /*=============================== ...

  7. 初识CDQ分治

    [BZOJ 1176:单点修改,查询子矩阵和]: 1176: [Balkan2007]Mokia Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 200 ...

  8. HDU5322 Hope(DP + CDQ分治 + NTT)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5322 Description Hope is a good thing, which can ...

  9. BZOJ4170 极光(CDQ分治 或 树套树)

    传送门 BZOJ上的题目没有题面-- [样例输入] 3 5 2 4 3 Query 2 2 Modify 1 3 Query 2 2 Modify 1 2 Query 1 1 [样例输出] 2 3 3 ...

随机推荐

  1. C++面向对象模型

    1. 基础知识 C++编译器怎样完毕面向对象理论到计算机程序的转化? 换句话:C++编译器是怎样管理类.对象.类和对象之间的关系 详细的说:详细对象调用类写的方法,那,c++编译器是怎样区分,是那个详 ...

  2. 【H5】dropload (移动端下拉刷新,上拉加载)

    插件概要地址:http://ximan.github.io/dropload/ 一般下载其中的demo2对照修改即可使用. 小吐槽.我在项目中用的时候,有个后端说ajax麻烦但是还是要做体现他很热爱工 ...

  3. WPF编程,C#中弹出式对话框 MessageBox 的几种用法。

    原文:WPF编程,C#中弹出式对话框 MessageBox 的几种用法. 1.MessageBox.Show("Hello~~~~"); 最简单的,只显示提示信息.   2.Mes ...

  4. Luogu P2483 【模板】k短路([SDOI2010]魔法猪学院)

    说实话,看到这道题的洛谷评级我傻了(传说中的最高难度) 然后看完题目才确定这真的是一道k短路的裸题. 也就敲了个A*吧,15分钟竟然没有调试一遍过. 欧洲玄学. 看题目,主要是找几条从1走到n的路加起 ...

  5. linux下的yum命令详细介绍

    yum(全称为 Yellow dog Updater, Modified)是一个在Fedora和RedHat以及SUSE中的Shell前端软件包管理器.基於RPM包管理,能够从指定的服务器自动下载RP ...

  6. Java 多线程(三)之线程状态及其验证

    目录 线程状态 Thread.State 状态类型 定义 说明 状态转换 状态验证 「NEW」-> 「RUNNABLE」 -> 「TERMINATED」 「RUNNABLE」 -> ...

  7. SpringBoot中使用Quartz笔记

    Quartz可以用来做什么? Quartz是一个任务调度框架,可用来做定时任务. 吧啦吧啦......... 还是直接上代码. application.properties  配置文件. * * ? ...

  8. 创建并使用maven archetype的随笔

    maven骨架archetype的意义在于一些项目的基础项:如引入的maven组件,例如eureka,ribben等,不希望每次新建项目都重复做一遍,还有例如公司规范的log格式,单元测试工具等,在新 ...

  9. Gulp:插件编写入门

    之前挖了个坑,准备写篇gulp插件编写入门的科普文,之后迟迟没有动笔,因为不知道该肿么讲清楚Stream这货,毕竟,gulp插件的实现不像grunt插件的实现那么直观. 好吧,于是决定单刀直入了.文中 ...

  10. kubernetes 集群新增node 节点并将应用分配到新增节点

    第一章 1.重新安装一台kubernetes node节点,新增节点:192.168.1.192 网址:https://www.cnblogs.com/zoulixiang/p/9504324.htm ...